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[1.1] Scale theory and transformational theory have converged in some interesting and exciting
ways in music theory, notably in the presentation of neo-Riemannian theory and other
transformational theories involving frugal pitch-class changes (where “frugal” here is meant to
include, but not exclusively refer to, parsimonious voice leading). An important visualization of
this convergence is the neo-Riemannian Tonnetz, which ushered in a wave of thought about how
music moves in time through a constructed (or generated) space. In many of these constructions,
there is a substantive reliance on the relative evenness of a collection of pitches or pitch classes. I
want to draw your attention to three particular approaches, the last of which will be the focus of
this article.

[1.2] First, Jason Yust's approach to discrete Fourier transform (DFT) phase space (Yust 2015b): the
DFT, as discussed by David Lewin (2001) and, later, Ian Quinn (2006, 2007), can give us a relative
numeric representation of evenness in any pc set. Broadly, it allows us to parse evenness along a
clear continuum relative to a totally even distribution. Additionally, while two different whole tone
collections would have the same magnitude of evenness as measured by the DFT, the phases of
those collections would be in opposition. Yust, in DFT phase space, explores how phases from the
DEFT tell a story about harmonic relationships. Second, the Callender, Quinn, and Tymoczko (CQT)
(2008) approach to voice-leading space: As with DFT phase space, the voice-leading space


http://www.societymusictheory.org/
http://www.mtosmt.org/issues/mto.19.25.2/mto.19.25.2.plotkin.php

constructed by Callender, Quinn, and Tymoczko maintains evenness as a core principal, and
distances between elements involve considerations of near-evenness and note-to-note proximity.
Lastly, the approach to modeling iterated maximally even sets through Filtered Point-Symmetry:
Filtered Point-Symmetry, or “FiPS,” is a transformational system built upon the manipulation of
iterated maximally even sets over time. It is a geometric visualization of John Clough and Jack
Douthett’s (1991) J function.

[1.3] This article deeply examines the utility of FiPS-based models. Although some models overlap
with those that can be expressed in a CQT voice-leading space, there are different theoretical
implications. Notably, only FiPS-based models are able to dissociate harmonic proximity from
minimal harmonic change. Also, FiPS-based models allow us to rigorously compare harmonic
relationships using different scales, such that a neo-Riemannian L transformation within a diatonic
collection can be distinguished from the same-sounding transformation when octatonic collections
are involved. This paper sets out to codify and streamline FiPS-based models as distinct from these
other approaches to musical evenness, and presents new theories based on what can be described
using FiPS-based models.(!)

Maximally Even Sets and FiPS

A familiar distribution

[2.1.1] Though I presume knowledge of set theory, as well as a familiarity with some existing
transformational theory, it is not my expectation that the reader has specialized training in
mathematics, nor is acquainted with the publication that lays out the basic premises of Jack
Douthett’s (2008) theory of Filtered Point-Symmetry. Even if the reader is well-versed in this
literature, it is worthwhile having the topics presented in a way that is tightly integrated with the
manner in which we are going to explore the theory. Let us begin by laying a preliminary
conceptual and geometric foundation.

[2.1.2] A maximally even (ME) set is simply a distribution of a group of things over a limited
amount of space, where the things are spread as evenly apart as possible. To visualize this, picture
the familiar clock face. Each hour is numbered, and each number could be assigned to a chromatic
pitch class. If you choose six notes from the chromatic scale, with the goal of maximal evenness,
you would want to choose six notes each a whole step apart. On the clock face (here, abstracted
into a collection of points around a circle), this is a selection of every other point (Example 1).

[2.1.3] Such a selection is a totally even distribution, with each selected item separated from the
next by an equal amount. The diatonic set is not totally even, but instead a maximally even
distribution of seven notes over the chromatic scale (written 7—12). This distribution cannot be
totally even, because seven shares no common factors with twelve. So it is as even as possible, with
the two anomalous half steps placed as far apart from each other as they can be (Example 2a). A
different visualization shows this selection of seven notes out of one chromatic segment on a piano
keyboard (Example 2b).

[2.1.4] Another familiar maximally even distribution is a triad within a diatonic key. Instead of a
clock face with twelve parts, picture a clock face of only seven parts, where each of those parts
represents one of the seven diatonic notes. Selecting three notes as far apart as possible (a
maximally even distribution of 3—7), Example 3 shows the C+ triad as one possible result. The
difference between 7—12 and 3—7 is subtle: In the former, the circle is divided into 12 equal parts,
just like 12-note equal temperament equally divides the octave. Because of this, 7—12 gives us a
ME distribution that is easily and accurately associated with chromatic space. In the latter, the
circle is divided into 7 equal parts. A diatonic collection is not made of an equal division of the
octave into 7 parts, though we can conceive of this evenly-spaced representation as a scale-step
space. When the two independent diagrams are joined, the image of the scale-step space in 7—12
yields an explicit diatonic key, and the image of 3—7 yields an explicit triad within that key.*) A
triad, then, is a maximally even distribution over a diatonic subset, and to get this diatonic subset,
we use the results of 7—12 to constrain the results of 3—7. This is more conventionally notated as
3—7—12, and is known as an iterated ME set (Example 4).



Determining maximal evenness using FiPS

[2.2.1] Moving beyond the basic notion of “as even as possible,” we use FiPS as a geometric method
to determine any ME distribution (including iterated ME distributions). FiPS relies on a minimum
of two rings, each with some number of points evenly placed around it. The most interior ring is
called the beacon, and all other rings are called filters. The beacon emits a beam from each of its
points, and when the beam encounters a filter, the beam follows these simple rules (see Example 4

for an animated reference):

1. If the beam directly aligns with a point on the filter, it will pass through that point.

2. If the beam does not directly align with a point on the filter, it will travel counterclockwise along the wall
of the filter until it does encounter a point to pass through.

3. The beam always leaves from a point in a direction normal to that point. This means that, after the beam
passes through a point on a filter, the direction of the beam will be altered. It will always point directly
outwards from the filter. For clarity in the animations, you can always see this change in beam direction prior to
the beam reaching the next point. A beam will start normal to the beacon, and split in the middle to become normal to
the point through which it will pass on the next filter.

[2.2.2] Some familiar ME sets in the chromatic universe are the pentatonic, diatonic, and octatonic
collections. Examples 5-7 show each of these collections, respectively, as determined by Filtered
Point-Symmetry. Each animation shows an interior ring of the given cardinality rotating within an
exterior ring of cardinality 12. The rotations cause the active holes on the chromatic ring to change
based on the rules given above. In the case of the pentatonic and diatonic collections, you will see
each one of the 12 collections; in the case of the octatonic collection, you will see the three distinct
collections.

[2.2.3] Example 8 shows 3—7 behaving similarly to the prior animations. It is slightly more abstract
than the prior material, in that (as in Example 4) we are imaging that the 7-hole ring corresponds to
some generic diatonic collection. Tt could be C major, G# major. . . we do not know, nor do we want
to know here, because this lack of specificity allows us to treat this configuration as a model for
what happens in any and all diatonic distributions of 3—7. In this example, the beacon cycles
through each possible ME triad in a diatonic collection. Example 9 shows the same material as
Example 8, but with the addition of a chromatic outer ring. With this addition to Example 9, the
collection portrayed by the 7-hole ring in Example 8 is made explicit: the position of the 7-hole ring
relative to the outer ring determines the particular diatonic collection (as in Example 6), and the 3-
hole beacon cycles through the possible ME triads in that collection (as in Example 8).

Correspondence with the | function

[2.3.1] The J function, defined by Clough and Douthett (1991) in their seminal article “Maximally
Even Sets” is given as

_ k+
VACESES S
where 0 < k < d — 1, such that an ME set with these parameters is
d-1
led = led(zd) = {led(k)}kz()

The J function was first used in reference to the diatonic collection, and the variables are named in
deference to that use case: ¢ referred to the cardinality of the chromatic collection (12) and d
referred to the cardinality of the diatonic collection (7). More generally, we can think of ¢ referring
to the cardinality of the container, and d referring to the cardinality of the distributed set. (In a
7—12 distribution, ¢ = 12 and d = 7. In a 3—7 distribution, ¢ = 7 and d = 3.) The other value,
m, is an offset value that I will explain shortly, but for now it is sufficient to notice that m is used in
conjunction with the pair of values ¢ and d. For the current example, we are going to arbitrarily
assign this offset m a value of 5. The value k is the element in the distributed set that one is curious
about. For instance, in our 7—12 distribution, we want to know to which of the 12 chromatic
pitches each of the seven elements 0, 1,2, 3,4, 5, 6 goes. The right side of the equation is wrapped
in brackets with feet; these brackets represent a quantization function known as the floor function,



which truncates any fractional value from a number to make it an integer.(3) The ME algorithm will
step through all of these values of k with the J function (usually written J")), the result of which is

the C-major diatonic collection:
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[2.3.2] When we revisit the FiPS representation of this distribution, we can associate each point on
the 7-beacon with the corresponding point on the 12-filter and see that the resulting set is identical.
Example 10 shows the values of k in black, next to corresponding points on the interior ring, and
shows the resulting values of J(k) in red, next to corresponding points on the exterior ring.
Additionally, we can see that point 6 on the 7-beacon has a beam that passes directly through point
11 on the 12-filter, and all other beams travel counter-clockwise to some extent before passing
through a point on the 12-filter. The proportion of counter-clockwise movement on the 12-filter (or
lack thereof) corresponds precisely to the fractional remainder for each k in the list, and the
distinctiveness of the straight beam is due precisely to the equivalence in the equation

12 7(6) [ —J =11 %, where the floor function is unnecessary. In other words, counter-

clockwise movement to the nearest point is the geometric analogue of the floor function.

[2.3.3] Just as J fz , describes Example 10, J$ 3 describes the values seen in Example 3 and at the

starting position of Example 8:

1,0 = | 292] = [$] = 02] =0
= |20) = |3] = [24] =2
@ = |730) = 4] = |43] =4

[2.3.4] Clough, Cuciurean, and Douthett (1997) formally define an iterated ME set as

My My, .M, mp,my,. — my,my,.. dp=1
JdO’dladZa-“,dnn Jdo d) dz dy (Zd”) - {Jdo d) dz dy (k)}k=0

where

Jg(:;:ii,z’ d, (k) d() di (Jgfdz (sz d3 ( Jd'l 1,dn (k))))

In this representation, the sequence of subscript values represents the chain of distributions from
right to left, such that the subscript for a 3—7—12 distribution would appear as J127 3. The still-to-
be-discussed superscript m values are associated with pairs of subscript values, such that m; is
associated with dp and d|, and my is associated with d| and d>. An iterated maximally even set
represented as J 15 5?7,3 is evaluated with superscripts and subscripts from right to left. The first

evaluation is J% 3, and the next is J 152’7. Unlike the previous rendition of J 152’7, however, only the

results of the previously-derived ME set are used as values for k. The result of this is a C+ triad
0,4, 7, as shown in the following, connected pair of equations:



I1,0)= 52 = 4] =08

5,00 = 252 = 1] = [24]

=[5 = |5] - [43] ¢
i fOe 5 = 3] 03 =0
A= 25 = [ F]= 43 =4
A 1242 = 31747

Changes over time

[2.4.1] The value m in the J function is called the mode index, and is most appropriately named in
the context of the 7—12 distribution. In J ]”é 5, Whenm = 0, the result is the DL—major collection.

When m = 1, the result is the Ab-major collection. As we saw previously, the C-major collection
occurs when m = 5. Each increment of m alters the resulting collection according to the circle of
fifths. In a FiPS representation of 7—12, changes to m correspond to the rotational offset of the 7-
beacon. A closer examination of the animation in Example 6 reveals a diatonic collection with
circle-of-fifths key changes as the beacon rotates. The fact that this change can be animated is
important, for it demonstrates a paradigmatic shift from the original conception of the J function:
Where m was originally conceived as an integer-based, static value, it can now be treated as any real number.
This real number can be changed continuously as a function of time. When rings rotate in the FiPS
animations, it is an animation of the value of m,, for a specific pair of rings (d,—1 , d,) changing as a
function of time.

[2.4.2] Returning once more to Example 9, you see a 3—7—12 FiPS configuration with the 3-beacon
continuously rotating clockwise. As it rotates, the output of the system is the repeating series <C+,
A-, F+, D-, B°, G+, E=>. This series involves all the ME triads within C major, where the change
between triads preserves as many common tones as possible.(4) When you rotate the 3-beacon
clockwise in 3—7—12, you are algebraicly using J 1"’217"’32, holding m constant at m; = 5 (for C
major), and increasing the value of 7, over time. Focusing on the algebra for just the first iteration,
J;'f 3+ as my increases, the result set is altered when [my | = 0 becomes [m2] = 1. Explicitly, when
|my| = 1, 1/d (in this case 1/3) is added to each of the values of %k prior to the floor function
being applied. As shown in Example 11, the addition of 1/3 to each value changes the diatonic set
from {0, 2,4},10a7 to {0, 2, 5} 047, meaning that the fifth element of a diatonic collection (at
value 4) is exchanged for the sixth (at value 5); in C major (assuming 0 is pitch-class C), this
constitutes a change from pc G to pc A.

[2.4.3] Because the fractional remainders are different for each value of k in Example 11, changing
the value of m will never result in more than one output value changing at a time. No more than
one note will change at a time whenever the cardinality of the distributed set shares no common
factors with the cardinality of the set into which it is distributed (such a relationship of cardinalities
is called coprime, represented by the symbol L). 3 and 7 are coprime, and 7 and 12 are coprime, or
317 and 7L12. Returning to the FiPS visualization, Example 12 shows a 7—12 distribution in
which the remainders are identified for each equation. Because 7 and 12 are coprime, each
remainder is unique, and each unique remainder corresponds to a unique number of degrees
between the beam from the beacon and the distance that must be traveled counter-clockwise to a
filter hole. When the beacon rotates continuously, the distances remain unique for each of the
beams, such that only one value changes at a time.

[2.4.4] In the next section, we are going to look at more distributions. We will expand our study to
the octatonic and enneatonic collections, and explore analytical spaces that allow us to easily
determine the result for rings in any position, even when both rings are moving simultaneously.



Configuration Spaces and Scalar Contexts

The neo-Riemannian Tonnetz

[3.1.1] The most ubiquitous geometry for transformations between trichords is the neo-Riemannian
Tonnetz. The common triad cycles may all be generated using a few relatively simple 3-ring FiPS
configurations, and the relationship between the models creates the possibility of a different
perspective on the capabilities of this geometric space.

[3.1.2] To begin, let’s examine a FiPS configuration of 3—8—12 (Example 13). The outermost two
rings, 812, work together to select a particular octatonic collection, as in Example 7, and the two
innermost rings, 3—8, select a 3-note ME subset of that particular octatonic. Because the beacon
selects a subset of the octatonic provided by the outermost rings, dashed lines have been used in
this figure to indicate the inactive members of the 8—12 distribution. (As opposed to the examples
in the previous section, 8 and 12 are not coprime. The impact of this difference is explored in the
next section, “Parsimony and Displacement.”)

[3.1.3] In Example 14, as in Example 13, the 01-octatonic is selected. Here, we see the beacon rotate
to incrementally change the selection of the maximally even subset. The harmonic output of
Example 14 is <{0, 3,7}, {0,4,7}, {0,4,9}, {1,4,9}, {1,6,9}, {1,6,10}, {3, 6, 10},
{3,7,10}, {3,7,0}>, where the last set is the same as the first, such that this forms an eight-chord
cycle. All of these chords belong to the same set class, because all 3-note ME subsets of an octatonic
collection belong to the set class of major and minor triads (0, 3, 7).

[3.1.4] The Tonnetz bears a strong resemblance to this octatonically configured example; the output
of Example 14 is exactly the neo-Riemannian PR (octatonic) cycle. Example 15 highlights each of
the three octatonic corridors in the Tonnetz, where such a corridor is bounded on either side by a
diagonal line of minor-third-related pitch-classes. The light red octatonic corridor of Example 15
contains exactly the same triads as Example 14; it is showing us the eight triads that are (uniquely)
subsets of the 0,1-octatonic.

[3.1.5] If we continue to think of the Tonneiz as a collection of three octatonic corridors, each
containing a unique slice of the 24 possible triads, then we can conceive of other common neo-
Riemannian cycles as patterns that move within and between these three corridors. For example, the
PL (hexatonic) cycle can be thought of as a cycle that first moves within an octatonic corridor (via
P) and then out into an adjacent corridor (via L). Example 16 shows such a cycle on the Tonnetz.
Every triad in the cycle is colored according to its octatonic corridor. Each pair of similarly-colored
triads are P-related; for instance, A- and A+ are both situated in the red (0,1) octatonic. Instead of
continuing an octatonic cycle after A+, the PL cycle has us step out into the blue octatonic corridor.

[3.1.6] Such a move—within and then out into—is precisely the manner in which we can conceive of
this gesture using FiPS. Example 14 shows the isolated rotation of a 3-hole beacon (where the 8-
hole filter is immobile), and Example 7 shows the isolated rotation of the 8-hole filter, which
changes the octatonic collection. Example 17 shows both events happening synchronously: both
the beacon and the 8-hole filter are rotating, causing chord-within-collection and chord-out-into-
collection changes to occur, over the same chord path as indicated in Example 16. Similar to the PL
cycle, the RL cycle—which traverses all 24 major and minor triads—also executes an alternating
chain of within and out into actions.

[3.1.7] You may notice a discrepancy between the description above and the visualization, namely
that the 3-hole beacon appears stationary. Let me explain this appearance of non-motion in greater
detail, which will also serve to clarify exactly how we visualize the process of iteration in the J
function. As the 8-hole filter rotates, it takes the 3-hole beacon along for the ride, as though the 3-
hole beacon were a hubcap attached to a tire. If the 3-hole beacon had no change in its associated
value of m over time, we would see it rotating in the visualization and maintaining its position with
respect to the 8-hole filter. To appear stationary, the 3-hole beacon rotates at a rate of change opposite
that imposed by the 8-hole filter, as though it’s on a treadmill or hamster wheel doing just enough
work to stay in place. So, although it appears stationary, the value of m; (for the 3-hole/8-hole



pairing) increases over time, causing a clockwise motion that counters the decreasing value of m1;
for the 8-hole/12-hole pairing.

[3.1.8] The iterated J function J;?)‘d'?ilz ™ is predictable: by putting in a certain set of values for

dn-1, dy, and my, the resulting ME set is a single, consistent result. FiPS, in modeling the J
function, shares this predictability: for any combination of ring cardinalities and rotational offsets,
there is a single, consistent result. This property allows us to gather information about all possible
outcomes for any set of ring cardinalities. Example 18 is a configuration space—a model of all
possible outcomes for a range of ring positions in a 3—8—12 configuration. This could be
represented as an iterated J function where dy = 12, d; = 8, and d» = 3. The numbers along the
axes in Example 18 indicate the values of m,, in the J function (m; along the x-axis, and m2 along
the y axis). For a moment, look closely at the C+ triad highlighted in red. For this triad, the values
of m along the y-axis fall into the range [1, 2). The values of m| along the x-axis fall into the range
[0, 4). In this particular configuration, as indicated clearly in the configuration space, any
combination of values in those ranges will yield a C+ triad.

[3.1.9] Jack Douthett and Peter Steinbach (1998) describe a Chicken-Wire Torus as the geometric
dual of the Tonnetz. Instead of each node representing a pitch-class, each node instead represents a
triad. (Example 19) Chord-for-chord and transformation-for-transformation, the Chicken-Wire
Torus maps onto the 3—8—12 configuration space (Example 20). This isomorphism is significant:
all parsimonious neo-Riemannian triadic transformations are modeled —completely and with
nothing extraneous—in a configuration involving maximally even trichords within octatonic
collections.

[3.1.10] In addition to the Chicken-Wire Torus, Douthett and Steinbach (1998) present another
diagram called the Towers Torus, which models a particular set of tetrachordal transformations
that bears some similarity to the triadic LPR group. Following from the Tonnetz isomorphism, we
find a similar match in a 4—9—12 FiPS configuration space (Example 21). Because the original
Towers Torus diagram and the diagrams that follow do not correspond without some rotation and
stretching, Example 22 is provided to demonstrate the adjustments made to the shape—but not the
substance—of the original diagram.®)

[3.1.11] The next section of this study will dive deeply into considerations of voice-leading
parsimony, including a discussion of transformational labels such as L, P, and R, and Douthett and
Steinbach’s proposed modifications to these labels for the tetrachordal Towers Torus. For now, I'd
like to simply draw attention to the fact that the 3—-8—12 configuration space can model common
parsimonious trichord cycles (Example 23), and the 4—9—12 configuration space can model
parsimonious tetrachord cycles (Example 24). The modeling itself is due to the isomorphism of the
particular configuration space with a particular torus. A more interesting facet is the strong visual
parallel between the spaces and labeled lines in Examples 23 and 24. Even though the spaces are
different, the lines represent similarly endless walks through harmonic cycles. Example 25 contains
an animation of the <Pj %, P %, R*> cycle (a visual analogue to the neo-Riemannian PR cycle of
Example 14). Example 26 contains an animation of the <P2 *, Ly *> cycle, a clear visual analogue to
the neo-Riemannian PL cycle of Example 17.

Diatonic Configurations

[3.2.1] To be sure, the isomorphisms above show us something about how voice-leading parsimony
corresponds to iterated maximally even sets, but we would be in error if we said that all neo-
Riemannian triadic transformations occur only when the music takes an octatonic turn, or that we
are necessarily in an enneatonic passage when there are parsimonious connections between
tetrachords. Let’s put ourselves in a diatonic mindset, using a 3—7—12 FiPS configuration. As
demonstrated in Example 6 and Example 8, the position of the 7-filter determines the diatonic
collection, and the position of the 3-beacon selects a maximally even 3-note subset of that particular
diatonic collection. If only the 3-beacon rotates, as in Example 9 (which is in Db major) and
Example 27 (in C major), then a parsimonious cycle of diatonic trichords will result.(®) For instance,
in the C-major example from Example 27, the cycle is <C+, A-, F+, D—, B®, G+, E—>.



[3.2.2] Example 28 gives a 3—7—12 configuration space, where each of the 36 major, minor, and
diminished ME diatonic triads is represented. Because these diatonic triads are a superset of the 24
ME octatonic triads, the conventional neo-Riemannian cycles can be modeled in diatonic space.
Examples 29, 30, and 31 each highlight one of the three previously-discussed neo-Riemannian
cycles (PR, PL, and LR, respectively). Of particular importance is the fact that although these are the
same harmonies, these cycles are not identical to those inscribed in the 3—8—12 space.

[3.2.3] In our octatonic configuration, we conceived of PR as something that occurs entirely within
a single octatonic collection (a corridor in the Tonnetz). This cycle of chords cannot take place
within a single diatonic key. FiPS suggests that we might instead describe this cycle, in diatonic
space, as an intra-key transformation from a major tonic to its relative minor, followed by a change
of diatonic key, where the triad is eventually impacted by a change to the key signature itself.
Imagine yourself at the piano with a C+ triad. You might be in F major, C major, or G major. An R
transformation takes you to an A~ triad, and you may still be in any of the three aforementioned
keys. But whatever key you do happen to be in, imagine that the key signature is steadily
increasing sharp-wise, such that you eventually find yourself in the key of D major. At this moment
in time, the C in your A- triad may not persist, forcing you to an A+ triad (the P transformation).
This alteration of R and P continues until the cycle is complete.

[3.2.4] The PR cycle in the diatonic is more similar to the octatonic PL and LR cycles, in that it
consists of inter- and intra-key chord changes. Although we will not necessarily hear a number of
key changes in a neo-Riemannian triadic cycle of any length, we should consistently take into
consideration the scalar context in which such chord progressions occur: are we listening to music
that seems more outside of tonality, in some grounded octatonic region, or are we listening to
music that moves more tonally and sequentially in a non-grounded-but-tonal manner? One final
note on the neo-Riemannian triadic progressions: consider as well the 3—5—12 configuration space
given in Example 32. Highlighted is an LR cycle, consisting of intra-pentatonic-key R and inter-
pentatonic-key L transformations. Although parsimonious PL and PR cycles are not possible in a
pentatonic collection, the presence of LR serves as an additional indicator that chords alone do not
provide complete information for these non-tonal transformational progressions. Further, the sus2 (or sus4)
chords appearing in the example are maximally even trichords in a pentatonic collection. In a
musically pentatonic world, this set class occupies the same distributional status as a triad, and not
the suspension-to-a-triad status it would have when used in a diatonic collection.

[3.2.5] Just as the diatonic trichords superset the ME octatonic trichords represented by the Tonnetz,
diatonic tetrachords superset the ME enneatonic tetrachords represented by the Towers Torus.
Example 33 gives a 4—7—12 configuration space, and Examples 34 and 35 trace two parsimonious
voice-leading paths through that space, in cycles that are chord-equivalent (though not quality-
equivalent) to their Towers Torus counterparts from Example 24. Example 36 highlights the chords
of the <L *, Ly %, R*> cycle shown in Example 24, but Example 36 fails to replicate this cycle: a
straight line cannot be drawn that connects only the Towers Torus chords, and in Example 36 you
can see that the line intersects a number of major-seventh chords (highlighted in yellow).

[3.2.6] In Example 36, the inability to draw a straight line through the <L 13, L2, R#> cycle shows
that, in 4—7—12, a cycle involving only those transformations is of a different nature than a cycle
that can be represented by a straight line. To properly address this example in detail, we need a
coherent and concrete understanding of parsimony, as well as language to distinguish those cycles
that can be represented by straight lines from those that cannot. The next section takes on these
tasks.

Parsimony and Displacement

Parsimony (Scalar and Chromatic)

[4.1.1] We might think of “voice-leading parsimony” as reasonably well-defined, considering the
decades it has appeared in music-theoretical literature. Yet parsimony has a multitude of
definitions, and existing literature has examples with varying parameters. In the first part of this
section, I am going to step back from configuration spaces to capture the current definitions of



parsimony, highlight some key concepts, and use scale theory to help make our conception of
parsimony more concrete. At the very least, clarity around the term will prove useful for the
purposes of the current discussion. In the second part of this section, I will return to configuration
spaces and propose a more precise way of characterizing displacement operations between chords
in a scalar context. In the final part of this section, I will look at uniform cycles in scalar contexts,
and at the varying degrees of parsimony in those cycles.

[4.1.2] The imprecision in the term “voice-leading parsimony” has led to an array of descriptions
and rule-sets that, while similar, are not consistent.(”) For instance, all theories of voice-leading
parsimony are concerned with some manner of minimal change, where minimal change is evocative
of a small quantity of pitches changing by a limited interval. Usually, but not always, the small
quantity of pitches is “one pitch,” though Childs 1998 focuses on transformations between
dominant and half-diminished seventh chords (sc4-27) where two pcs change in each
transformation, and Douthett and Steinbach 1998 create p,, , notation to indicate a change between
chords involving m notes changing by half step and 7 notes changing by whole step, where either
of those values can be greater than one. What constitutes a limited interval is similarly without
concensus, though agreement is often found in a measure of 1 and/or 2 semitones.® As in neo-
Riemannian theory, 2-semitone parsimonious changes often occur in discussions involving
similarly-even or identical set classes; 1-semitone parsimonious changes seem to be preferred in
approaches that deal with a wider array of set classes, such as Cohn 2003 and Straus 2005.9) To
summarize the first two points, and add a third observation on set class:

1. when a voice moves by a limited interval, that interval is usually 1 or 2 semitones
2. when a small quantity of pitches change, usually that small quantity is 1; and

3. parsimonious models seem to either follow specific sets within a limited family of set classes that have

similar (and high) evenness, or they follow a broad family of set classes and are primarily concerned with
10)

smooth changes between sets of different types.(
[4.1.3] Let’s now be more specific about the first of these points, where a voice moves by a limited
interval of 1 or 2 semitones. As noted above, in models that deal with a multitude of set classes,
there seems to consistently be a 1-semitone limit, and intervals of 2 semitones surface when there is
a discussion of chords or a (related) discussion of evenness-preserving changes. The classic neo-
Riemannian example of Cohn 1997 serves as an excellent model for this, consider Example 20,
which shows the isomorphism of the neo-Riemannian model of trichords and the 3—8—12
configuration space. These spaces are notably distinct—the latter represents both the chords and
the collections from which they are derived, whereas the Tonnetz makes no inference about the
octatonic—yet it is the isomorphism that explains why the neo-Riemannian model is drawn to 1-
and 2-semitone changes: an octatonic space has scalar step sizes of exactly 1 and 2 semitones. In
fact, scalar context provides such a consistent, universal justification for the varied step sizes
discussed in the literature on parsimony that we might state the following:

Trait 1: When a voice moves by a limited interval, that interval is a single scale step.

[4.1.4] The chromatic sizes of a single scale step are determined by taking the floor and ceiling of
the ratio of the cardinality of the chromatic set to the cardinality of the scale. (This will be true for
any maximally even collection, since a defining property of maximal evenness is for every generic
interval to exist in one integer size or two consecutive integer sizes.) In the case of the whole tone
scale, a step will consistently be 2 semitones, since | 12/6] = [12/6] = 2. And in the case of the
pentatonic, the step sizes will be 2 or 3 semitones, since | 12/5| = 2 and [12/5] = 3. In all other
scales that are part of the chromatic universe —those we study most when looking at parsimony
between chords—a scale step will consist of 1 or 2 semitones, as practice has already led us to
observe. The chromatic is a special case, in the sense that one does not have a chromatic scale
distributed within the chromatic universe, though if one did, it would always yield a 1-semitone
step, since 12/12 = 1. In practice, the analyses that are dealing with many set classes are operating
in the chromatic universe, and are constrained to a 1-semitone step precisely because there is no
scale that could apply to the broad selection of set classes being examined —a point we will return
to shortly.



[4.1.5] The second item listed above is that only a small number of pitches are changed in a
parsimonious transformation. As noted, that small number is usually one, but with exceptions. I
recently posed the following scenario to my colleagues: “We are likely to agree that the C-major
diatonic is parsimoniously related to G major and F major. I would make the same case for the
relationship of the three octatonic collections, for when I look at the corridors on the neo-
Riemannian Tonnetz, the close-as-possible relationship of the collections jumps out to me as similar
to how we see closely-related diatonic keys. Do you think of the octatonic collections as
parsimoniously related?” The spontaneous reaction—one with which I fully agree—is that yes, the
relationship is parsimonious. The problem, of course, is that each octatonic collection has a four-
note difference with any other. Instead of calling this un-parsimonious because of the quantity of
notes changing, the following reasoning seems to be broadly inclusive of existing discussions of
parsimonious transformations, along with the octatonic collection scenario noted here:

Trait 2: When a small quantity of pitches change, that quantity is the minimum ged as
determined by a consideration of collection and scale size, where the cardinality of the
smallest collection is greater than 2.

[4.1.6] To apply this reasoning to changes between closely-related collections, we take

gcd(12,7) = 1 to see that a parsimonious transformation between closely-related diatonic keys
will involve the change of a single pitch. Applied to octatonic collections, gcd(12, 8) = 4 would be
taken to mean that a parsimonious transformation between octatonic collections involves a four-
note change. But this latter point does not mean that four-note changes are parsimonious outside of
a consideration of the octatonic collections as a whole. Triads in the octatonic present a series of
relationships such that, for 3—8—12, we calculate min(gcd(12, 8), gcd(8, 3)) = 1 and use this to
say that a parsimonious transformation between triads in octatonic collections involve single pitch
changes. In 4—6—12, I would expect a parsimonious transformation to involve a change of two
notes, each by whole step. I expect two notes to change because

min(ged(12, 6), gcd(6, 4)) = min(6, 2) = 2 (and I expect those pitches to change by whole step
because | 12/6| = [12/6] = 2). More generally, assuming a distribution that uses d,, following
the notation of the J function, the number of notes changing in a parsimonious transformation is

min(ged(do, d), ged(dy, da), - , ged(dy-1, dy).

[4.1.7] Finally, I would address the observation that appears third in the list above, regarding the
chord relationships that are examined in studies of voice-leading parsimony. For studies that limit
themselves to discussion of a few set classes, set class preservation is a prominent concern. It is
neither a consistent nor universal concern in discussions of parsimony —in fact, it is precisely the
relaxation of concerns about set class preservation (towards greater evenness) that leads Douthett
and Steinbach 1998 to form Power Towers from the three OctaTowers—but the existence of this
concern should be examined. In “General Equal-Tempered Harmony,” Ian Quinn (2006 and 2007)
demonstrates how the discrete Fourier transform can be used as a measure of evenness for
different set classes. This work is expanded by Callender, Quinn, and Tymozcko (2008) in their
generalized voice-leading spaces, and in these spaces chords of similar evenness sit in close
proximity. If one envisions a totally even chord in voice-leading space encased in a small sphere,
then all the chords that are nearly even can be included in a slightly-larger sphere, such that all
maximally-even chords sit in very close proximity to one another. Because of this, it stands to
reason that nearly-even set classes are commonly the focus of parsimonious transformation studies
(one is able to more efficiently visit all nearly-even chords from a series of parsimonious moves
than one could efficiently visit all similar less-even chords). Still, there are at least two distinct
approaches to parsimony: a sort of chromatic parsimony that is concerned with a multitude of set
classes (or even all set classes of a particular size), and another sort of parsimony that seems like it
can be clarified with scale theory. For this latter type, I would say that there even exists a special
type of parsimonious transformation, p., which preserves evenness between chords. The neo-
Riemannian transformations would fall into this special category. And, with the use of scales, the
parsimonious relationship of G+ and B° is particularly interesting because it is p, in the diatonic,
and only p in the octatonic.

Displacement Operations



[4.2.1] As noted above, the fact that the changes G+—E- and G+—B° may both be parsimonious
changes of harmony does not tell a complete story, especially with respect to the collections in
which those changes occur. Specifically, pitch-class equivalence alone does not create chord
equivalence outside of the chromatic set.(12) The prior discussion of diatonic configurations goes
into great detail on the distinctions between neo-Riemannian operations in various configuration
spaces, and G+—B° is particularly attention-grabbing in that, while it might represent an intra-key
diatonic transformation in 3—7—12, in 3—»8—12 it is not an evenness-preserving change, and it is a
change that moves from within an octatonic collection to a space between octatonic collections.
Returning to the example from the top of this section, we see another related problem of specificity:

F:.C’ i F: Am’ and F: C’ — G: Am’ are both parsimonious transformations, but the
displacement involved in the latter could be characterized as a displacement that involves more
work, since it includes a change of diatonic key. To make sense of the differences in chord changes
involving identical sets of pitch classes, I propose the use of a displacement operation.

[4.2.2] A displacement operation 0 is a translation in a specific configuration space, where that
space is identified by subscript identical to that used in the J function, 84, 4, d.... d,_1.d, - 012,73, for
instance, represents a displacement operation in the configuration space of diatonic triads, as in
Example 28 above. A specific chord at a specific position in the configuration space is given by K,
where the position is identified by the m,, values of the J function, ]Cm] P o) operates on
these values of m,, and takes as input the changes in m,,, so that 5(Am, Amy)12.73 would alter m;
and my of a chord Ky, ., . For instance, a displacement operation on the C+ harmony at

mp = 5,my = 0 is a displacement operation on the chord Ks50. A 1-unit clockwise rotation of a 3-
hole beacon would be represented as 6(0, 1)12.7.3, and a 1-unit clockwise rotation of a 7-hole filter
would be represented as (1, 0)12,73. A displacement involving a simultaneous clockwise rotation
of the 7-hole filter and 3-hole beacon would be represented as 6(1, 1)12.73, and a counter-
clockwise rotation of the 7-hole filter with a clockwise rotation of the 3-hole beacon would be
represented as 6(—1, 1)12,7,3. Operations can be exponentiated for repetition, and also inverted,
where inversion reverses the signs of all non-zero numbers: (0, 1)1_21’7’3 = 0(0,—1)1273, and

o(—1, 1)1_21’7’3 = 6(1, =1)273. The application is straightforward: displacement values are added

6(1, D275
to the similarly-ordered m values: s o (C+, C:I) ———— Ks541,0+41 (or Kg,1, which is A~, Giii).

[4.2.3] The values of Am, can be any real number, and may or may not cause a change in harmony
depending on the configuration space. Here are three distinct transformations using the same
6(2,0)12,73 on different chords:

6(2,0)1273
]C4’0 (C+ FV) —— K7’0 (C+, G:1V)

8(2,0)1273
Ks o (C+ CI) —— K (C#O, D:vii®)

6(2,0)1273
Ko, (C+, GIV) ———— Koo (C#-, Adiii)

In the first, the harmony does not change from C+; in the second, the harmony changes
parsimoniously to C#°; and in the third, the harmony changes unparsimoniously to C#-, in the
manner of Douthett’s stroboscopic portraits.(13)

[4.2.4] A contextual shorthand for the displacement operation is 6*. §* guarantees a non-T( result,
such that 6" applied to a chord in a configuration space is always changed, regardless of how large
or small a translation was required to cause the change. The values of m,, in d* are accordingly
restricted to the ternary set {-1, 0, 1}, where 0 indicates no change, 1 indicates a change caused by a
clockwise rotation, and -1 indicates a change caused by a counter-clockwise rotation. As an
example, consider the three different C+ chords from the previous paragraph. With §*(1, 0)12,7.3,
we have a shorthand way of saying that any C+ triad in this space, regardless of key, will change to
C#°. A limitation imposed on 0" is that, because it guarantees a non-T result, an application of §*
may not skip over any chords in the configuration space. This limitation means that §*(1, 1) will
always represent traversal through the corner boundary of the current chord; if a corner boundary
were not traversed, there would necessarily be two d™ in series (6% (1, 0), 5" (0, 1)). Finally, the



binary restriction of increments of m,, (0 or |1|) allows us to classify any d* displacement with a
unique ordinal after converting the (absolute values of the) binary to baseyg. 6(0, +1) has order 1,

0(x1, 0) has order 2, and (+1, +1) has order 3.

[4.2.5] 6" is a convenient shorthand because it lets us focus on chord changes without necessarily
having to know the precise starting coordinates within that harmony in the configuration space.
Example 37 lists §* for all of the configuration spaces discussed in this article, aside from 3—5—12.

[4.2.6] Due to the persistence of chords across multiple keys in 7—12, §* sometimes lacks the
necessary precision to guarantee a specific result, and in those cases it is improper to use it as a
shorthand. This occurs four times in Example 37:

¢ In 3—7—12, moving up from a minor triad may result in L or Tg + dim, depending on the key
¢ In 3—7—12, moving down from a major triad may result in L or T4 + dim, depending on the key
¢ In 4—7—12, moving up from m7 may result in Ly * or 73 + M7, depending on the key

¢ In4—7—12, moving down from m7 may result in L * or Tg + M7, depending on the key

Other times, because of the sometimes unevenly spaced corners, doing §*(1, 1) followed by

6" (=1, —1) is not an involution. Example 37 is meant to show how broadly applicable 6* can be in
these configuration spaces; the subsequent notes are meant to show how it is not an operation, but
a shorthand that refers to all possible changes from a chord K given any of the possible
coordinates of K.

Context in transformations

[4.3.1] In Tonality and Transformation, Steven Rings (2011) deeply explores some of the implications
of scale degree qualia. His ideas resonate with the material in this paper, in the sense that we are
not just exploring chords as collections of pcs, but chords as sets contextualized and made distinct
by a scale. In Examples 38 and 39 below, evenness-preserving parsimonious transformations are
shown in octatonic and diatonic scalar contexts. On the right side of each example are the
possibilities for 6 (0, 1), on the left side of each example are the possibilies for §*(1, 0), and below
each example are the possibilities for 6* (1, 1). On the right side of the diatonic example
(Example 39), the neo-Riemannian L transformation is given as a S transformation, not 8%, in
accordance with the limitations of the shorthand notation provided above and listed in Example
37.

[4.3.2] It is interesting to note the distinctive causes of the neo-Riemannian transformations. For
instance, while R is an intra-collection transformation in both the octatonic and diatonic (or, more
precisely, can be an intra-collection transformation in the diatonic), L and P result from opposite
circumstances. In the diatonic, L is intra-collection and P results from an inter-collection signature
transformation s (in the manner of Hook 2008). In the octatonic, P is intra-collection and L results
from an inter-collection transformation.(14)

[4.3.3] It is also interesting to consider the role evenness plays in distinguishing parsimonious
transformations. All of the chords in a configuration space, rendered through a specific J function,
are maximally even and as even as anything else in the same configuration space. The previous
discussion noted that a parsimonious transformation G+—B° appears in a 3—7—12 configuration
space because it is evenness-preserving, but not in a 3—>8—12 configuration space, because the
diminished triad is not maximally even in the octatonic. We should also observe that in a
pentatonic collection, a diminished triad is not even possible, and in the chromatic we would
instead identify as parsimonious any of the 6 trichords caused by a semitone toggle of a pc in G+.

[4.3.4] It seems a good moment to mention the recent work of Jason Yust (2015b), since he has
created a chromatic space that is based on the evenness of pc distributions. Yust describes the
construction of the neo-Riemannian Tonnetz in “Fourier phase space” (specifically, ¢3/5-space; see
Example 40). To understand what that means, let me offer an incredibly brief explanation of DFT
phases. The DFT will treat a pitch-class representation of a set as a waveform with peaks and



valleys, and a non-multisest representation of each waveform is a series of binary numbers
representing the quantity of each pitch class:

{pco, pc1, pca, pcs, pea, pcs, PCe, PC, PCs, PCy, PC10, PC11 ). The C+ triad would have 1s for
pco, pca, and pe7:(1,0,0,0,1,0,0,1,0,0,0, 0). As a waveform, this looks like a square wave
with flat-topped mountains at pcg, pcs, and pc7, and when that is presented as an input to the
DFT, it is decomposed into 12 non-square waveforms that, when added together, would
reconstruct the square-wave-style signal of the triad. Each of those partial waveforms is a
component of the DFT, ¢,. A special property of these waveforms is that they are even sinusoids:
over the span of an octave (the full possible span of pcs, as octave-equivalent pitches), the second
component will have two evenly-spaced peaks, the third component will have three evenly-spaced
peaks, etc. Additionally, there is symmetry in the decomposition such that we need only be
concerned with the first six components. The more closely a component waveform matches the
distribution of pitches in the set, the more relevant that component is to the reconstruction of the
square wave, and that relevance is measured in the component’s magnitude. The pcset {0, 4, 8}
would be well-represented by 3, since both are totally even divisions of 12 units into three parts.
Because the set class of major and minor triads has ic3, ic4, and ic5, the magnitudes of @3 (ic4), @4
(ic3), and @5 (ic5) are much stronger than the magnitudes of ¢ (icl), @2 (ic6), and @¢ (ic2) for a
sc(037) triad.

[4.3.5] As one might expect, the magnitudes of the different components of the DFT are identical
for any set that is a member of the same set class. Within a set class, what distinguishes one set
from another is the phase of each component of the DFT. Put simply, the phase is the amount each
component must be offset to match the given pitch-classes. As an example, since G+ is 77 (C+), the
phases of each component for a G+ triad would in some way come to represent 77 when compared
with the phases for the decomposed C+ triad. A Fourier phase space plotting ¢3 against @5
emphasizes a relationship between ic4 and ic5, and gives a space that is similar to 3—8—12
configuration space (and therefore also similar to the neo-Riemannian Tonnetz). Its similarity to the
configuration space is related to the properties of evenness emphasized in the DFT, but it is
dissimilar in that phase space has neither intervals nor harmonies as its core building blocks.
Rather, one might separately take a DFT of the pitch C, the pitch E, and the pitch G, and then choose
to draw a triangle connecting those pitches in phase space. At the center—and only the center —of
that triangle would be the phase of a C+ triad. Movement within that triangle towards the {C, E}
dyad could be seen as increasing the volume or quantity (i.e. doublings) of those pitches in the
triad, until such a moment that the G is no longer present. Similarly, that {C, E} dyad is only
representative of a major third at its center; any inclination towards C or E results in a non-
representative version of ic4.(1%)

[4.3.6] As compelling as phase spaces are for considering many pcset relationships, phase spaces
ultimately represent relationships in chromatic space, and it is the special near-even properties of
triads in the chromatic universe that give them a prevalent placement in this space. One can take a
7-component DFT of mod 7 triads to examine the relative evenness of chords within some
representative diatonic key, but I'm not aware of a method to represent iterated layers of evenness
via this transformation. In this respect, configuration spaces and FiPS are distinctive in their ability
to represent harmonic relationships of equally-even chords in a particular scalar context, and their
ability to situate G+—B° as appropriately proximal in 3—7—12. Further, it is this representation
using FiPS that gives us the ability to find correspondence between cyclic patterns in different
spaces, which is the topic of the next section.

Uniform Cycles and Chains of Displacements

[4.4.1] Every maximally even configuration space we have looked at (3—5—12, 3—7—12, 35812,
4—7—12, and 4—9—12) consists of some governing scalar collection and some chordal subset of
that collection. The similarity in the construction of the spaces is analytically useful, especially since
it allows us to draw strong connections between harmonically dissimilar environments. To uncover
some of these connections, I want to focus here on uniform chord cycles.



[4.4.2] Uniform chord cycles consist of a regularly repeating set of displacements at a uniform rate
of change. A subset of all possible cycles can be clearly expressed in a configuration space by
drawing a completely straight line between any two identical harmonies.(19) Yust 2013a identifies
this type of cycle as having second-order uniformity, and as being “highly non-trivial” with respect to
analytical applications. In contrast to a cycle that might involve regularly repeating
transformations at a non-uniform rate of change, a uniform cycle may consistently be characterized
by a line with a slope M, and often as a short series of J or 0" operations repeated a specific

number of times.(17)

[4.4.3] The previously-shown uniform cycles can be characterized using §* as follows:

¢ Example 29 (A PR cycle in a 3—7—12 configuration space) shows the a cycle (6*(1, 0), §*(0, 1))‘1*2’7’3
starting at a C- triad.

¢ Example 30 (A PL cycle in a 3—7—12 configuration space) shows (§*(1, 0), §*(1, —1))?2,7’3 starting at a
D- triad.

e Example 31 (An LR cycle in a 3—7—12 configuration space) shows a portion of
(6%(0,-1),6"(1, -1 ))}%’7’3 starting at a G- triad.

¢ Example 32 (An LR cycle in a 3—5—12 configuration space) shows (§*(1, 0), 6*(0, 1))}% 5 5 starting ata
C- triad.

e Example 34 (A <Py *, Py*, R¥> cycle in a 4—7—12 configuration space) shows
(6%(1,0),56%(0, 1), 6*(1, 0))?2,7,4 starting on C#m?7.

e Example 35 (An <L, P, > cycle in a 4—7—12 configuration space) shows (§*(1, —1), §*(1, 0))‘112!734

starting on F7.

[4.4.4] Unlike the six other uniform cycles listed above, Example 36 (a cycle in a 4—7—12
configuration space that augments an <L *, L *, R*> cycle) cannot be characterized using 6%,
because of its movement into and out of m7 chords (excluded from d* according to Example 37). In
this scenario, to properly express 0 we must determine the repeated harmonic pattern as well as
the slope of the line from that pattern. There is a four-chord pattern that repeats six times, adjusted
each time by T3, before the uniform cycle completes. The slope of a line drawn from the top left
corner of a half-diminished chord to the top left corner of the next half-diminished chord (77 of the
first)isM = — %, which can be understood as a line that travels three units down and two units to
the right. This relates m| to my as my = —%ml, and those values will always appear in that
relationship in any 0 operation. Because a four-chord pattern is repeated six times over the course
of the cycle, we want four 6 operations in series. Assuming a start at the top-left corner of a half-
diminished seventh chord, the chain of displacements will be

(5(2, -1), 5(% , —%), 5(% ,— %), 5(%, —1))?2’7’4. It is also worth noting that we now have the
language to address the inability of Example 36 to represent an <L *, Ly *, R+> cycle with a
straight line: in a 4—7—12 configuration, that cycle is non-uniform. One way to characterize the
cycle might be {(( % ,—1), 5(% ,—1),6(1, — l)>?2’7’ 4» and this non-uniform characterization has no

equation that can relate m11 to my.

[4.4.5] Example 23 labels straight lines indicating PR, LR, and LP cycles in a 3—8—12
configuration space. Example 41 represents all possible LP cycles in the 3—»8—12 configuration
space. Each cycle in Example 41 is represented by a line with the same slope M = — % In this case,
the slope tells us that the governing scale collection (adjusted by changes to m1;) changes sharp-
wise at a rate 4x faster than the root-lowering intra-scale transformations represented by changes to
my. In addition to the shared slope between cycles, each cycle is distinguished by a constant b that
alters the chord on which the cycle starts. The cycle with D+ has b = 5.5 (my = — %ml +5.5), the
cycle with F+ has b = 3.5, and the cycle with E+ has b = 1.5. These constants indicate the 7y
value when m; = 0.

[4.4.6] There are some related uniform cycles in this configuration space, as shown in Example 42.
What is distinctive about these cycles is that, despite the shared slope of the line from Example 41,
neither consists of wholly parsimonious changes between the triads. In the case of the cycle <F-,



Ab+, Db—, E+, A—, C+, F—>, the transformations consist of a parsimonious R transformation followed
by an unparsimonious Nebenverwandt (N) transformation, as explored in Cohn’s Audacious Euphony
(2012). And in the case of the cycle <D-, Bb—, Gb—, D—>, the transformations consist exclusively of
the un-parsimonious transposition Tg. One might use Example 37 to assemble the same

observation: passing through a down-right corner boundary with §*(1, —1) will always yield Tg,
and down-then-right will always be a combination of 6*(0, —1) and 6" (1, 0) resulting in R-then-
N or P-then-L.

[4.4.7] In all scalar configuration spaces, including the neo-Riemannian-Tonnetz-isomorphic
3—8—12 space, there will consistently be chord-to-chord boundaries that are un-parsimonious. If
we are concerned entirely with parsimonious chord changes, then we may choose to ignore
patterns and transformations that intersect these boundaries; if we instead choose to look at the
wider grouping of cycles caused by uniform rates of change and repeated displacement operations,
then we may include patterns such as those in Example 42. The difference between an NR cycle
and an LP cycle in this space is nothing more than the specifics of the chord boundary; both cycles
may be described as {(d*(1, 0), d*(0, 1)))?, and it is only the starting chord that differs. (The T3 -
cycle is a special case in which only corner boundaries are crossed, {(d*(1, 1))?, though one can
still see d*(1, 1) as an explicit simultaneity of d*(1, 0) and d*(0, 1).)

[4.4.8] With respect to visualizing parsimonious and un-parsimonious displacements, Example 43
indicates un-parsimonious boundaries with a red mark. As shown in Example 37, all
transformations between two adjacent corners will be un-parsimonious, as in the Tg cycle, and

every other chord pair affected by scalar transformation will not be parsimonious, as in the RN
cycle. The un-parsimoniousness at the corners results from simultaneous changes within and
between scales; the un-parsimoniousness at alternating edges results from the non-coprime
relationship of 8 and 12.

[4.4.9] The diatonic trichord space (3—7—12) has a much broader array of cycles than the octatonic
trichord space, due to the irregular sizing and distribution of chords in the configuration space. No
edges are un-parsimonious, because 3 is coprime with 7 and 7 is coprime with 12; un-parsimonious
transformations occur consistently and exclusively at adjacent corners (Example 37 can serve as a
reference for the relationships at these boundaries). Continuing to focus on the LP cycle, Example
44 identifies the LP cycle in this diatonic trichord space, along with all other uniform cycles that
have the same rate of change (transpositions of m, = — %ml). Six bands of color are used to
indicate the regions in which the cycles occur. Example 44 also provides a color-coded key to the
overall harmonic patterns. Of these patterns, three are enneatonic, three are hexatonic (including
LP), and two of the hexatonic cycles are un-parsimonious. These two un-parsimonious hexatonic
cycles, indicated in green and fuschia, are special in that the regions have zero area, and in both
cases include corner boundary d*(1, —1) displacements.

[4.4.10] The cycles in Example 44 follow a consistent (though incomplete) pattern of permutations
that divide the octave into three major-third-related groups. Let’s take the pink cycle, <X° X- X+ Y°
Y- Y+ Z° Z- Z+>, as the most representative cycle. The main distinction between the pink pattern
and the standard hexatonic LP cycle is that the latter traverses the configuration space in a way that
avoids the diminished chord. A different permutation on chord-avoidance shows up along the
green line. In this pattern, the major chord is omitted instead of the diminished chord. We do not
see the minor-chord-omitting pattern <X° X+ Y° Y+ Z° Z+> in Example 44, because that particular

7
Example 45 attempts to classify these diatonic cycles with some manner of conventional naming.

cycle occurs when the slope is Ml = +% (instead of the M = —+ under examination here).(lg)

Beyond a basic configuration space

[5.1.1] In a FiPS configuration of 7—12 with an initial offset of m; = 0, we geta DL—major
collection. Incrementing 111, the collections traverse the circle of fifths until the pcset is once again
Db major, when m; = 12. Although the circle of fifths is complete, incrementing m; to this point
does not involve a 360° rotation of the 7-hole beacon; instead, the beacon has only rotated 51.43°,
and will not have completed a full 360° rotation until it runs through the circle of fifths a total of



seven times. When we view the pcset output of FiPS as ordered, instead of unordered, then at

m; = 0, we have Db Tonian; at m; = 12, based on the orientation of the 0-hole on the beacon, we
have Eb Dorian; and at m; = 24 we have F Phrygian. Although the contents of the collection
remain the same, the scale degrees are shifted, and a full 360° rotation of the beacon involves a run
through 7 X 12 = 84 distinct modes. Note that, when we treat the output of FiPS as ordered, the
constraint on /7 presented in Section 2.3.1 is altered to a modulus of cd, such that
O<m<cd-1.

[5.1.2] One consequence of treating the output of FiPS as a family of ordered sets is that the

configuration spaces reflect a more concrete measure of voice-leading distance. For instance, in an
50,0127
ordered 3—7—12 configuration space, C+ ————— A-will be one of (0,4, 7) — (0,4, 9),

(4,7,0) — (4,9,0),0r(7,0,4) — (9,0,4), depending on the exact rotational offset of the 7-
hole filter. And in an ordered 7—12 configuration space in which one wants to consider modes
(Example 46), C lonian is more proximal to G Ionian (§*(1)127) than it is to D Dorian (5*(1){3 ;) —

take note of the exponentiation in the latter equation.

[5.1.3] When looking at chords and scales as ordered pcsets, there seem to be common and intuitive
ways of discussing sets consisting of identical pcs. With seventh chords, we usually refer to root
position, first inversion, second inversion, and third inversion as a means of identifying the first
and lowest pitch in the presentation of that chord. The ordinals are not random; if the pitch classes
are ordered in their most compact form starting from the chord root, it is the first, then second,
then third, then fourth note that takes its place on the bottom. With modes, we have a similar
manner of discussion: the mode after Ionian is Dorian, and the mode after Dorian is Phrygian. The
ordering of those modes is based on the stepwise shift of the final.

[5.1.4] There is something reminiscent of parsimony in these orderings, in the sense that
neighboring inversions and neighboring modes represent the most frugal changes to a set or
collection’s order. With FiPS (and the J function), these incremental changes of order are arranged
by placing two filters of identical cardinality in series. Let’s try this first with a configuration of
3—3—7—12, which, to distinguish the 3-hole beacon and filter, could be written as
3(inner)—3(outer)—7—12. The 3(outer)—7—12 filters will operate in the now-familiar diatonic
triad configuration space. The inner 3-hole beacon does not alter the pitch classes in the sets; rather,

it alters the inversions of the triads by frugally shifting the order of the pcs. Above,
50,1273
(0,4,7) — (0,4, 9) was given as one possible version of C+ ————— A-, and it is also a version
57(0,1,0)12733
of C+ —————— A-. But where (0, 4, 7) and (4, 9, 0) cannot be adjacent in an ordered two-

dimensional configuration space of 3—7—12, the ordered three-dimensional configuration space of
5°(0,1, 12733
3—3—7—12 makes that possible with (0, 4, 7) ———— (4,9, 0). Although the

transformation from C+ to A- is conventionally parsimonious, and although the inversion of a
chord on its own is a frugal change, the combination of both changes here shows a more disjunct
change in voice-leading —the type of disjunction that is typical of corner-boundary traversal in a
configuration space.

[5.1.5] Of note in these discussions of ordering is that, until one introduces a rotational transform
using 3—3, no crossing voice leadings are possible, which relates to the voice-leading spaces
discussed by Tymozcko (2011), Yust (2015b and Hall (2009).1%) What is unique about FiP$ is that it
allows us to treat that condition as either one that must be overcome through a great leap in the
space, or—using a configuration in which rotations are allowed —allows us to more conventionally
represent a voice crossing as a boundary condition across a different axis of movement. We may
choose to remain in an ordered two-dimensional space in which it takes a large translation to get
from (0,4, 7) to (4,9, 0), or we can represent that translation in a different dimension using a
3(inner)—beacon.(20) In this sense, nested rings of the same cardinality are not a trick of FiPS in
which particular relationships are achieved; rather, nested rings of the same cardinality move what
would be a large voice-leading traversal in one dimension into a short traversal in a different
dimension. I think the latter representation can be particularly effective for analysis.



[5.1.6] An interesting configuration space—one which I find analytically useful —is a three-
dimensional space generated by 3—7(inner)—7(outer)—12. As it was with the 3—+3—-7—-12
configuration, this space operates generally within the diatonic trichord space, here represented by
3—7(outer)—12. The 7(inner) filter causes a frugal displacement of scale degrees, in the same
manner one might assign the first scale degree to the consistently shifting finals in the list of modes

discussed above. In this way, a triad altered by a shift in the 7(inner) filter could be expressed with
AA A 5" (0’1’0)12.7,7,3 AA A
scale degrees as (0, 2,4) ———— (1, 3, 5), or without regard to ordering as C+—D-. This is

as unparsimonious a transformation as possible between triads in a diatonic collection, yet the
displacement of scale degrees is as frugal as possible. As we have previously seen, what is
parsimonious or frugal in an isolated configuration, such as shifts between octatonic collections,
does not necessarily yield parsimonious or frugal results.

[5.1.7] A key-of-C-major slice of the three-dimensional configuration space generated by
3—7(inner)—7(outer)—12 is given in Example 47. Example 48 shows all possible §* relationships
from a C+ triad in all three dimensions of the configuration space. With respect to Example 47, the
changes brought about by the 3-hole beacon are all parsimonious; the changes brought about by
the 7(inner)-filter are all unparsimonious, and could be expressed by the scalar transposition ;. I
find it interesting that the dominant and subdominant in this space sit at opposing corners, making
them higher-order transformations in terms of §*, and uniquely higher-order (as opposed to the
other chords at corner boundaries that also appear at non-corner boundaries). This configuration
resembles Lerdahl’s model from Tonal Pitch Space (2001), but the resemblance is not something that
supports or suggests similar reasoning to Lerdahl. Rather, the configuration space presented here
results from bringing into its own dimension the alteration of chord roots by ¢, (in lieu of having
large vectors between chords in an ordered 3—7—12 configuration space).

[5.1.8] Example 49 provides an animation of the FiPS rings, in which only the inner 7-filter rotates.
The series of chords shown in the example is C+—»D-—E-—F+—->G+—>A-—B°—C+, an ascending
series of {1 transpositions in the key of C major.

Analysis with order-shifted sets

[5.2.1] Compared to the configuration spaces of the previous sections, I think it is less clear what
impact higher-order iterated maximally-even sets might have on analysis. I will show here a
speculative analysis of the third phrase of Chopin’s Op. 28, No. 9 Prelude in E major. This analysis
takes place in a 3—7(inner)—7(outer)—12(inner)—12(outer) FiPS configuration, though our focus
will not be on the role of the inner 12-filter (which displaces the pcs by chromatic step, as shown in
Example 50). Rather, this analysis focuses on the role of the intra-key actions of the 3-beacon and
inner 7-filter. Example 51 is the excerpt of the Prelude under consideration. Example 52 is a
lengthy representation of every harmony in the figure as the product of a J function, and the &
operation (or 0" representation of J) that transforms each chord to the next. Example 53 is a
detailed animation of the entire phrase expressed in a FiPS configuration of 3—7—7—12—12. If
you scan through the §* values for m3 and m4 in Example 52, or scrub through Example 53 quite
slowly, you will see repetitive patterns in the 3-beacon and inner-7-filter. To make this more visible,
Example 54 shows the motion of only the 3-beacon (with the inner 7-filter stabilized), and Example
55 shows the motion of the 3-beacon and the inner 7-filter, with the outer 7-filter stabilized.

[5.2.2] The pair of motions from the 3-beacon and inner 7-filter is precisely repeated three full times,
once for each group of four chords. Example 56 graphs the rotational offsets of the 3-beacon in the
top trio of graphs, and the rotational offsets of the inner 7-filter in the bottom trio of graphs. Each
repetition of the four-chord pattern is highlighted in red. The music has a sequential sound: it
moves from E major to F major, then suggestively to G major, and finally returns to E major. But, as
we begin to explore the sequence in the music, it does not conform to the rigidity of pattern
suggested by the motions of the 3-beacon and inner 7-filter.

[5.2.3] The four-chord groups are not truly sequential. The first three chords belong to E major (E: I
V1), and the fourth chord is an A- triad. A-is a chord achieved through mixture, meaning that we
conceive of it as a chord belonging to E minor. The §*(0, —1, 0, 1) operation on the second E+
harmony moves m1;, from 9 to 6, which is, in FiPS, a representation of G major / E minor. The key



shifts again as the sequence starts in F major, making the borrowed E: iv chord a pivot to F: iii.
Unlike the previous four-chord group, this group stays in its key (F: I V 11V), with no alterations to
the fourth chord. But instead of shifting to G major at the start of the third four-chord group, a G-
triad appears, which is diatonic to the previous F major group. Musically, we might make
arguments that the sequence starts in minor, not major, but it is also worth noting that the F major
membership of the G- triad brings with it some ambiguity. By means of §(0, —1, 0, 0)? on the G
minor triad {7, 7,2}, G- changes from Dm: iv to Cm: v, and does not stabilize as a local tonic
before other chromatic shifts lead to G: V 1. The tonicization of G+ is followed by a rather dramatic
chromatic shift to E major.

[5.2.4] As explained in the previous paragraph, the 4-chord pattern in the music—E: IV Ix, F: 1V I
x, G:1V I x—is not entirely consistent, and I would argue that part of the intrigue of this passage is
that we can simultaneously hear it as both a regular pattern and an irregular one. FiPS is showing
absolute consistency at the intra-key level, and this may offer some guidance as to why are able to
hear a sequence: there is a consistent diatonic pattern that runs as an undercurrent to the less
consistent key areas and modal borrowings.

Final Thoughts

[5.3.1] In this paper I started by examining maximally even sets, Filtered Point-Symmetry, and the
J function. I then explored configuration spaces and scalar contexts as useful theoretical models
that can be understood in terms of multiple layers of evenness working in concert. Among other
things, configuration spaces allow us to examine and compare harmonic relationships in different
scales, such that an L transformation is not the same in a diatonic configuration as it is in an
octatonic configuration, even when the pcs are the same. I pursued the concept of distinctive, scale-
based harmonic relationships more deeply by examining the historical use of parsimony, and by
presenting a displacement operation that helps to codify the traversal of a configuration space. I
also looked at uniform cycles in different configuration spaces. Finally, I examined multi-
dimensional configuration spaces as a means of moving crossing voice leadings into a different
dimension, and as a potential means of analyzing music. I hope the reader agrees that FiPS and its
configuration spaces are able to deliver many interesting and analytically fruitful insights into
harmonic relationships.

Richard Plotkin
University at Buffalo
richardjplotkin@gmail.com
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Footnotes

1. The seasoned scale theorists to whom I refer would be familiar with Clouth and Douthett 1991;
Clough 1999; Douthett 2008; and Plotkin and Douthett 2013a and 2013b.
Return to text

2. I use diatonic to refer exclusively to set class [7-35]. I use heptatonic to refer more generically to a
7-note collection.
Return to text

3. A more familiar simple quantization function is rounding, which takes any fraction to its nearest
integer, instead of the lowest integer.
Return to text

4. A discussion of harmonies preserving “as many common tones as possible” begins to encroach
on concepts of voice-leading parsimony. This connection is further explored in the “Parsimony and
Displacement” section below.

Return to text

5. Plotkin and Douthett 2013a goes into greater detail on these isomorphisms.
Return to text

6. A detailed discussion of parsimony appears in 4.1.1-4.1.7. Although this cycle of diatonic
trichords is not a neo-Riemannian cycle of chords belong to sc(037), it is indeed parsimonious.
Return to text

7. When I refer to inconsistent usages of the term “voice-leading parsimony,” I am thinking of the
aggregate of Cohn 1996, 1997, 2000, 2003; Callender 1998; Douthett and Steinbach 1998; Childs
1998; Straus 2005; and Tymoczko 2008.

Return to text

8. A nice example of the lack of consensus around interval limits is in Callender 1998: “Another
consideration in the formalization of parsimonious voice leading is the intervallic limitation of
moving voices. Cohn limits motion of voices to no more than a whole-step, Childs to a half-step,
and Douthett and Steinbach keep track of half- and whole-steps separately. Since the interval
vector for set class 6-34 contains a high proportion of whole-steps, I shall limit conjunct voice
leading to the half-step” (221-22).

Return to text

9. By “similarly even,” I mean to refer to a limited family of set classes that have similar (and high)
evenness—for example, a family of set classes that includes augmented triads (totally even) along
with major and minor triads.

Return to text

10. CQT voice-leading spaces model both evenness relationships and voice-leading relationships
between all sets (or set classes, depending on OPTIC equivalence). This is notably distinct from
other approaches to parsimony that focus on chords that are nearly-even or an abundance of set



classes.
Return to text

11. It is possible that such an approach could lead to a more specific characterization of un-
parsimoniousness, where a 3-note change in a 3-note triad is more un-parsimonious than a 2-note
change in a 3-note triad. In this paper, I have kept the simpler characterization, where something is
or is not parsimonious.

Return to text

12. Such a perspective strongly evokes scale degree qualia as proposed by Steve Rings in Tonality
and Transformation (2011), further discussed in 4.3.1.
Return to text

13. Douthett 2008 proposed stroboscopic portraits as a means of examining non-consecutive pc set
output in FiPS. Treating each m,, as a function of time m,(¥), a stroboscopic portrait captures the
output of the system at specific intervals of ¢. If, for instance, the output of a configuration were
<C+, A-, A+, F§-> with chord changes occurring att = 0,7 = 1,7 = 2, and ¢ = 3, then a strobe
with an interval size of 2 would only capture C+ and A+ as output from the configuration.

Return to text

14. These properties are discussed to some extent in Plotkin and Douthett 2013a and 2013b.
Return to text

15. A short yet thorough synopsis of the math in Yust's article is summarized at
http://www.eamonnbell.com/blog/2017/04/22/introducing-the-dft/.
Return to text

16. In fact, the straight line must also intersect the same portion of the harmony, as shown in the
subsequent examples.
Return to text

17. Slope is usually represented by m, but I have chosen M here to avoid confusion with m,, from
the J function.
Return to text

18. A table of all possible patterns appears in Plotkin 2011, though the patterns are not as clearly
identified by their transpositional and permutational relationships. Some related thoughts appear
in Plotkin 2010.

Return to text

19. The lack of crossing voice leadings is important in the work of Tymoczko 2008 and Hall 2009.
Return to text

20. As previously discussed in relation to d operations with values greater than 1, such leaps can be
treated in the manner that Douthett 2008 approaches stroboscopic portraits.
Return to text
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