
 

[1] This article critically examines both Klumpenhouwer networks (K-nets) and their analytical deployment. Since David
Lewin’s introductory article in 1990, K-nets have been among the most frequently discussed and analytically utilized tools for
post-tonal transformational analysis. (1) Because they increasingly form the methodological basis for post-tonal scholarship
—including  entire  issues  of  Music  Theory  Spectrum  and  Intégral  devoted  to  their  theoretical  elaborations  and  analytical
functionality—it seems right to consider (or reconsider) the sorts of information they are best able to convey and also to
scrutinize their music-analytical use.

[2] K-nets are elegant structures that not only allow us to relate pitch-class sets (pcsets) in multiple ways,  but facilitate
hierarchical structures in which individual chords are shown to be comparable to networks of chords, networks of networks,
and so forth. (2) To many proponents, this potential for “recursive” relations serves as the K-nets’ raison d’être. I believe—and
hope to demonstrate—that such hierarchies might just as easily be considered their greatest pitfall. K-nets also enable us to
relate sets and networks that are neither transpositionally  nor inversionally  equivalent,  but this is  another double-edged
sword: as nice as it is to associate similar sets that are not simple canonical transforms of one another, the manner in which
K-nets accomplish this arguably lifts the lid off a Pandora’s Box of relational permissiveness. Clearly, the more ways that it is
possible to draw equivalent relations, the less significant those relations become.

[3] Beyond the question of significance, when data can be shaped in multiple ways, we necessarily rely upon some mode(s) of
interpretation to form and arrange our analytical objects. While interpretation lies (or arguably ought to lie) at the heart of
music analyses, I will suggest that problems can arise when there is too great an abundance of data to sift, when we do not
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have a clear idea of how to sift,  when we have not adequately  negotiated the boundaries of our data set,  when some
interpretations are represented as taxonomical prototypes, and when a priori extramusical assumptions begin to drive our
analytical choices. The first and longest part of this essay examines K-net structure (apart from its implementation); the
remainder amounts to a detailed editorial on associated theoretical and interpretive matters. More specifically, the following
four broad topics will be addressed:

K-nets as dual transformations;I. 
The issue of relational abundance (“promiscuity”);II. 
The phenomenology of displaced pitch-class inversion and dual inversion;III. 
The issue of hierarchy and recursion. (3)IV. 

[4] Topics III and IV (phenomenology and recursion) were raised lucidly and succinctly by Joseph Straus during the closing
plenary session at the 2003 Mannes Institute on Transformational Theory. Regarding recursion, Straus commented that it “is
only a problem when our desire for it leads us to emphasize musical features that might otherwise be of relatively little
interest.” Straus was more skeptical about dual inversion, noting that as pc-space constructions they are difficult,  if not
impossible,  to  hear when realized and concluding that  they  “have no intrinsic  interest,  they  correspond to  no musical
intuitions, they provide an answer to a question that no one has cared to ask.”(4) This present essay will briefly expand upon
Straus’s comments regarding phenomenology, and will present a broader case against the analytical use of recursion. (5)

I. K-Nets as Dual Transformations

[5] Like a host of other tools, including similarity relations, split or near transformations, and topographical distance metrics,
Klumpenhouwer networks allow us to relate two objects that belong to different taxonomical classes. Those “objects” have
generally  been  pitch-class  sets  (pcsets),  though  other  musical  types  could  be  used.  In  particular,  K-nets  and  dual
transformations both describe situations where some of the notes in a pcset are transformed in one way while the other
notes are transformed in some other way. From K-nets’ outward appearance as unified networks of nodes and arrows, this
dual transformational basis might not be so evident; this section teases it out.

[6]  K-nets  always  integrate  some  combination  of  transpositional  and  inversional  relationships,  denoted  by  the
node-traversing arrows or line segments, respectively. The way we associate K-nets is through isography. If their graphs look
the same in some well-defined respects, they are related. The standard definition of K-net isography goes something like this:
two networks are considered isographic if they have the same configuration of nodes and arrows and if their respective T
arrows either carry the same values of n or if those values are inversely related. Also, the respective I  values must either
differ by or sum to a constant integer, depending upon whether we are showing positive or negative isography.

[7] But one can get at the information conveyed by isography, particularly the hyper network transformations, without using
I-arrows at all. To illustrate that point, it will be helpful to review the basic structural characteristics of K-nets. I will attempt
to do so as plainly as possible through six essential statements (S1 through S6) that describe normative K-net usage. These
six statements together with their accompanying commentary might serve as a primer on both K-net rudiments and K-net
practice. The first three statements describe K-net construction; the last three deal with isography, the basic method for
comparing  network  structures.  Along  the  way,  I  will  suggest  a  simpler  analytical  organization—based  upon  the
dual-transformation model—that whittles away those portions of  K-net structures that  are not vital  to their  use.  I  will
simultaneously advocate one way to convey more valuable information without altering fundamental K-net structures. My
central goal here is to draw out the intuitive basis of K-nets, and to use the same data that goes into shaping their relations to
convey clearer and more meaningful musical connections.

[8] S1 A network  is  formed of  nodes  and  arrows.  Nodes  depict  elements;  arrows  depict  relationships  among  the
elements. Arrows can be bi-directional, indicating an involutional relationship (e.g., inversion), or they can be
unidirectional, indicating a non-involutional relationship (e.g., transposition). Figure 1 shows a visual network
representation.

Comment 1.1: “Elements” can signify almost any musical feature, but most often they represent pitch classes or
networks of pitch classes. All elements within a single network must represent the same class of objects (all pitch
classes, all networks, etc.). K-net analysis often relies heavily on the ability to show identical-looking K-nets that
operate on different classes of objects. Such K-net “recursion” (mentioned informally earlier) will be discussed in
the final section of this article.
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Comment 1.2: I chose the broader and more neutral term “relationships” rather than “transformations” because
of the latter’s stronger metaphorical implications—of actively mapping one thing onto another. As I will show,
these  devices  can  be  constructed  in  a  non-transformational  (metaphorically  ‘static’)  or  a  less  strictly
transformational manner. Like elements, relationships can theoretically take a wide variety of forms (c.f., Lewin
1987), but in practice they have most always been limited to transposition and inversion.

Comment 1.3: In his later work, Lewin used simple line segments (with no arrow heads) in place of bi-directional
arrows. We will henceforth adopt that practice in this article.

[9]  S2 K-nets employ combinations of transposition and inversion operators. (6)At least two pairs of elements must not
be connected by transposition (T  arrow). Figure 2 shows an abstract four-node K-net model.

Comment 2.1: Following Lewin’s convention, I will use the notation T  for transposition by n semitones and I
for the inversion that exchanges any two pitch classes that sum to n mod 12. Since inversion is an involution (if
I (p)   q then I (q)  p), it is shown with bi-directional arrows or simple line segments; transposition is shown
with unidirectional arrows (if T (p)  q then T (q)  ~p, except where n = 0 or 6).

Comment 2.2: At least two pairs of elements must be transpositionally disconnected because if a fully connected
network contained only a single I  arrow, it would essentially be a T-network (i.e., a network of nodes connected
entirely by T  arrows). (7)Imagine a network with nodes a, b, and c. If the distance between a and b is known to be
T  and the distance between b and c is known to be T , then elements a and c are clearly, if implicitly, related by
T , not by some inversion. Were the nodes of a network connected entirely via transposition arrows (i.e., a
T-net), then the intervals separating each pair of nodes would be fixed. Such a network is shown in Figure 3.
T-nets do little more than describe transpositionally defined set classes (T  classes). Since T  classes are well
understood and easily defined, using a more complex system to generate the same result would serve no purpose,
at least at the level of pitch class. In Figure 3, we could omit any one of the arrows without effectively losing
information. For example, if we removed the T  arrow, it would still be clear that the relationship between e4 and
e2 is T . Indeed, this happens to be true for K-nets as well;  a missing T-arrow can be inferred by the
difference between the I-arrows. This matter of acknowledging implicit network transformations will arise again
later.

Comment 2.3: We do not need to discuss networks that are connected entirely via inversion arrows (we might call
these “I-nets”) because they are fundamentally indistinct from K-nets. An informal proof is shown below:

The transformation I I (n) produces a transposition because inversion is its own inverse (i.e., I I  = I I
= T ). Consider the pair of I-net interpretations in Figure 4. Although only inversional relationships are
shown,  the  pitch  classes  that  diagonally  oppose  each  other  are  implicitly  connected  by  transposition
(because they are separated by two I  arrows). We might draw a T  arrow from the NW to the SE corner
of  each  I-net  and  we might  draw a  T  arrow from the  SW to  the  NE corners.  With  two  implicit
transpositional relationships and four explicit  inversional relationships, this is  properly a K-net (merely
posing as an I-net). net).

Non-trivial networks require at least three nodes and, in any well-formed network, transformations not
shown must nevertheless be implicit (see S3 below).

[10] S3 Every node is graphically connected (by arrows) to at least two other nodes in the network.

Comment 3.1: These connections are merely the ones displayed. As just demonstrated in Comment 2.3, every
element at least implicitly connects to every other element in the network through the transitivity of transposition
and inversion operators. One only need display as many connections as are necessary to implicitly establish the
relationship between every pair of nodes.

If, in Figure 2, the arrow between e1 and e2 were erased, we would still know how e1 and e2 are related by virtue
of the other arrows. Moving counterclockwise from e1, we see that e1 is related to e2 by I T I  (reading left to
right). Since e3 = I (e1) is equivalent to e3 = y-e1 and the expression e4 = T (e3) is equivalent to e4 = e3+x, we
can say that the relationship between e1 and e2 is modeled by: e2 = z – (x + (y – e1)). More simply, pairs of
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operators combine as follows (all operations mod 12):

          T T  = T

          I I  = T

          T I  = I

          I T  = I

To reflect K-net essentials rather than general K-net practice, we might profitably rewrite S3 as follows:

[11] S3a The relationship between every pair of nodes must be implicit from the network design.

Comment  3.2:  This  understanding  of  K-net  well-formedness  accommodates  incomplete-looking  network
structures. It also underscores an important point that is often either overlooked or underemphasized in K-net
practice: every node in a K-net must be completely connected within the structure; the arrows merely reflect
those relationships upon which we choose to focus. Consequently, K-net isography (and K-net analysis) requires
picking and choosing those facets of a chord that  we want to compare. (8)  Isography  therefore  differs  from
devices such as equivalence or similarity measures (which generally do not cherry pick among intervals or subsets
to compare)  and also from other transformational  devices that  show mappings of one set  onto another.  In
Section IV (on relational abundance), I will argue that this flexibility can be cast either as a feature or a potential
pitfall.

[12] S4 Particular K-net interpretations are not directly compared; rather, it is their graphs that are compared. Graphs
that are structurally equivalent are said to be “isographic.” There are two ways that isography may be attained:
positively isographic networks have the same transposition (T )  arrows;  negatively  isographic  networks  have
inversely related T  arrows. (The inverse of T  is T .)

Comment 4.1: K-net aficionados may notice and perhaps protest that I have omitted a seemingly fundamental
aspect of positive and negative isography. S4 only mentions that the transpositional relationships are the same in
each set; it says nothing about the inversional relations. This is because, as I shall demonstrate, the inversional
axes (I  arrows) are effectively irrelevant to determining whether isography can be drawn. (9) We might append
the following corollaries to S4:
 

Corollary 4.1         When two K-nets feature identical T  arrows, but different I  arrows, their
respective I  arrows will always differ by a constant value. (10)

Corollary 4.2   When two K-nets feature inversely related T  arrows (i.e., when they’re negatively
isographic), their respective I  arrows will always sum to the same value (i.e., they,
too, will be inversely related). (11)

[13] S5 “Strong isography” is a special case of positive isography. Two K-nets are said to be “strongly isographic” if they
are positively isographic and their respective I   arrows are also identical.

[14] S6 The transformation between K-nets (so-called “hyper” transformation) is calculated and expressed as follows:

<T > signifies positive isography, where n represents the difference between any and all I  value(s) in one
local network and its/their counterpart(s) in the other.

a. 

<I > signifies negative isography, where n  represents the sum of any and all  I  value(s)  in  one  local
network and its/their counterpart(s) in the other.

b. 

[15] In Comment 4.1,  I  claimed that  network-internal  I  values are  unnecessary  to determine whether two K-nets  are

x y x+y

x y y-x

x y y-x

x y x+y

n

n x 12-x

n

n n

n

n

n

n

n x

n x

n

4 of 19



isographic. Presently, I will show that they are also unnecessary for calculating the exact transformation between K-nets. In
other words, I will present a different and simpler way of formulating K-net transformations. Although there is no lack of
clarity in Lewin’s and Klumpenhouwer’s definitions of K-nets and network isography (summarized in S6), I find it helpful to
conceive of this apparatus in less formal and also rather different terms. So we do not get lost in a sea of definitions and
redefinitions,  let  us  momentary  step  back  and  recall  the  conditions  under  which  people  turn  to  K-nets  and  network
isography. The following synopsis might be helpful:

At the basic level of pitch-class relations, K-net isography portrays situations where two sets are each split
into a pair of transpositionally defined subsets, and the subsets of one set can be transposed or inverted onto
the subsets of the other set.

[16] Imagine T  arrows as a sort of glue that binds the tones they traverse into T -defined set classes. As mentioned in
comment 3.2, if we have elements a, b, and c, where b = T (a) and c = T (b), then it would be gratuitous to draw an arrow
from a to c, since, by transitivity, we already know that relation to be T . When two or more nodes are bound together by
T  arrows, I will collectively refer to them as a “T-set.” A K-net could be redefined as a pair of T-sets that are separated by a
particular axis of inversion (as one can infer from comment 2.3 above). So, a three-node K-net will always feature a dyadic
T-set and a singleton (even a single note is a T-set by virtue of the implicit T  relationship to itself). Four-node K-nets can
either be split into #3 + #1 T-sets or #2 + #2 T-sets (#n refers to a set of cardinality n), and so forth. (12)

[17] Incidentally, if a K-net is defined as a network of nodes that are completely connected (at least implicitly) by T- and
I-arrows, then it will always yield two and only two distinct T-sets. An informal proof of this is simple enough. We know that
transposing  transpositions  yields  transpositions;  inverting  transpositions  (or  vise  versa)  yields  inversions;  and  inverting
inversions yields transpositions. Any network members not connected by transposition are therefore connected by inversion.
Were there three constituent T-sets, A, B, and C, such that I (A)  B and I (B)  C, we would know that members of A
and C properly belong to the same T-set because I I  = T . This is why there can only be as many as two T-sets. We know
that there must be at least two T-sets because if all nodes were transpositionally connected, the resulting structure would be a
T-net, not a K-net.

[18] To determine the mapping from one K-net to another, there is no need to know the inversional axes that connect each
network’s two constituent T-sets. Assume two collections X and Y have been interpreted as K-nets such that T  maps T-set1
of X onto T-set1 of Y. Likewise, T  maps T-set2 of X onto its partner in Y. More formally: T (T-set1(X))  T-set1(Y) and
T (T-set2(X))  T-set2(Y). The Klumpenhouwer (hyper) transform from X to Y simply equals <T >, the sum of the split
transpositions.  In  the  case  of  negative  isography,  we  interpret  two  K-nets  such  that  I (T-set1(X))   T-set1(Y)  and
I (T-set2(X))   T-set2(Y).  The Klumpenhouwer transform from X to Y now equals to <I >,  the  sum of  the  split
inversions. (13)

[19] Figure 5 demonstrates the transformation from some set X to some set Y both as a split transposition and as normally
realized K-nets where the I  relations form the basis for comparison. Figure 6 similarly presents two ways of determining
negative isography. (14) Focusing on T-set transformations does not merely save time,  it  also presents a simpler musical
scenario: hearing or envisioning dual transpositions or inversions versus hearing or envisioning the differences between
multiple dual pc inversions operating simultaneously on each individual collection.

[20] For a more dramatic example of how one might recast K-nets as
split  transpositions  or  inversions,  let  us  re-examine  what  might  well  be  the  most  elaborate  K-net  in  print.  In  Lewin’s
contribution to Spectrum’s  2002 K-net  special  issue,  he demonstrated that  “any K-net,  no matter  how complex,  can be
embedded as a contiguous subnetwork of some PL-cycle [Perle-Lansky cycle].” Lewin’s aim (to show the cyclic nature of
K-nets  and to  formalize an interesting claim made by Perle)  differs  from mine,  but  en route to making his  point,  he
incidentally demonstrates that any K-net can be cast as a pair of T-sets. For our current purposes, we do not need to delve
into the more rigorous demands and formalisms of PL-cycles, but it is worth retracing some of Lewin’s steps before steering
onto our own (far more modest) course. The network Lewin produces in his Figure 1.3 is shown here as Figure 7.

[21] If we can draw a path of T  arrows, we can say that all pcs that lie along that path collectively form a T-set. Figure 8

shows one clear path in Lewin’s network. We must now determine whether each of the remaining pcs can either indirectly be
attached to the initial T-set, or whether they collectively or partially form a second T-set. The following discussion will seem
more lucid if read while examining Figure 9. A T  arrow connects, and thereby groups, pcs G and A. Because a path that
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features two consecutive I  arrows implicitly yields a T  arrow from the first to the third pc, we can connect C  to A with a
T  arrow by following the path <C  — I  — B — I  — A>. Connecting the upper-right C is only a bit more complex. F
and A  are transpositionally connected as part of the first T-set. The upper-right C is inversionally connected to F. Think of
F, A , and C as forming an incompletely drawn three-note K-net. Every three-note K-net has one and only one T  arrow;
the other notes are connected by inversion. That means that we can envision an implicit I  arrow between C and A . The
transpositional (T ) connection between G and C is now clarified by following the path <G — I  — A  — I  — C>. At
this point, it is apparent that C , A, G, and C cluster to form the other T-set. Like all discrete pairs of T-sets, there are no T
arrows that can implicitly connect any pc in one T-set to any pc in the other. (15)

 

[22] That one T-set is obvious while the other is hidden is purely a product of the way this structure was drawn: i.e., the
placement of the nodes and the arrows that Lewin chose to include. There are no rules governing what arrows should be
drawn (my S3 might be taken as a commonly abided preference rule—but it is not followed in Figure 7, which, to some
degree, accounts for its apparent complexity). In Figure 10, I simplified Lewin’s graphical display to clarify the opposing
T-sets. Because all relations within a T-set are transpositional, I omitted the “T” labels in showing the intervallic distances
from one pc to another in Figure 10a. I then took the next step of omitting the T-set-internal arrows altogether in Figure
10b. In both Figures 10a and 10b, I labeled only the inversional axis of one token pair of pcs (one pc from each T-set). All
other axes can be inferred from this one. (16)

[23] By moving to increasingly abstract levels, we can clarify what is distinct about this entire family of isographic network
interpretations. (17) Figure 11 suggests two ways to describe K-net families: the first displays the constituent T-sets in normal
form; the second uses names from Forte’s catalog, with the slight variation suggested by Castrén (1994). For inversionally
asymmetrical set classes, transpositions of the standard prime form carry the postfix “A” and transpositions of its inversion
are labeled “B.” Consider the T I class [01247] (5-z36): transpositions of [01247] are called 5-z36A and their inversions
(transpositions of [03567]) are called 5-z36B. Naturally, any combinations of 5-z36A and 4-z15A can be drawn as negatively
isographic to those designs in Figures 7–10.

[24] Recasting K-nets as dual T-sets implicitly obviates the network-internal T  arrows. As others have mentioned, T  arrows
dynamically  model  the  intervallic  relations  that  are  held  invariant  from  one  chord  to  another. (18)  That  dynamism  is
metaphorical  in  nature  (after  all,  pitches  are  not  literally  mapped  onto  other  pitches),  but  the  active  language  of
transformational theory enlivens our analytical narrative. Consider the rhetorical difference between saying “T  maps A
onto C” and “C lies four semitones higher than A ,” or even “the interval between A  and C is 4 semitones.” However
appealing we find the language of transformational theory, its graphical interface often seems a bit ungainly and clarity can be
compromised  by  an  abundance  of  space-consuming  graphs  that  often-unnecessarily  interpret  every  single  musical
segment. (19)

[25]  Even the I-arrows,  which I  have omitted,  can be surmised through intervallic  analysis.  A pattern of increasing or
decreasing intervals between the T-sets reflects the degree to which two T-sets maintain constant inversional balance. The
distance between internal T-sets can also be inferred from split transformations. If one T-set moves by T  and the other
moves by T , then clearly the distance between the two T-sets changes by three semitones from one chord to the next. (20)

One could even say that inversional balance is more clearly expressed by dual transformation than by network I  arrows.
Figure 12 illustrates this with two three-network progressions. Each progression maintains <T > relations from chord to
chord, but the split transformations show that only the latter (Figure 12b) truly projects an inversional wedge (or, more
accurately,  Figure  12b  can  potentially  project  a  wedge  in  some  musical  realizations).  Differentiating  between  these
transformational paths seems both worthwhile and simple.

[26] The K-net transformation <T > means that the (pc space) inversional axis between the two T-sets is maintained from
one chord to the next. <T > signifies that the inversional axis has been offset by one semitone. But <T > can be realized in
many ways. For example, in a two-chord progression, one T-set remains invariant, while the other moves at T ; alternatively,
one T-set moves at T  while the other moves at T ; and so forth. While a case can be made that <T > transforms maintain
a  certain  degree  of  consistency  (that  of  inversional  balance),  what  of  other  <T > transforms?  Figure  13  shows  two
progressions that  feature <T > relations.  In  the first  progression (Figure  13a),  comparing chords  1:2  with  chords  2:3
suggests little similarity of motion. Both are <T > transforms, but one features T-sets moving by interval classes 5 and 3;
the  other  features  motion  by  ics  4  and  6.  However,  in  the  second  progression  (Figure  13b),  a  certain  consistency  is

n n

8 0 8

n

8

5 3 8

n

n

n n

4

2

11

n

0

0

1 1

1

2 11 0

n

2

2

6 of 19



maintained throughout and we can see and potentially hear why this might be called <T >. The lower T-sets are invariant
throughout, while the upper T-sets progressively move at two semitone intervals. Again, K-nets do not differentiate between
consistent and inconsistent uses of <T > nor do they project the divergent ways in which <T > can be calculated.(21)

[27] One brief example from the literature will demonstrate a case in which the polyvalence of <T > makes K-net isography
seem inadequately discriminating. Figure 14 features a brief excerpt from the end of Witold Lutoslawski’s Symphony No. 4
(1992). It is a striking passage for celli alone, one of the few times when only a single instrumental timbre is heard, and it
directly follows and precedes moments of complete silence. I will present a K-net-based reading of the three manifestations
of the six-note motive (marked c1, c2, and c3), and also make some additional analytical observations.

[28] Motives c1, c2, and c3 share the same contour (<013245>) and many intervallic similarities. In fact, when comparing c1
and c2, one would surely notice that, except for the invariant first note, the latter is T  of the former. Accordingly, in Figure

15, I show a <T > (T +T ) K-net transform that resembles the <T > transformations shown in Figure 13b. By contrast,
c2 and c3 belong to the same set class and are, in fact, literal pitch transformations, with the latter lying seven semitones
above the former. Using musically consistent segmentation, we can show a T  relation from the lowest pitch of c2 to the
lowest  pitch  of  c3  and  another  T  relation  from  the  upper  pitches  of  c2  to  the  upper  pitches  of  c3.  This  “split”
transformation (T +T ) combines into another <T > K-net transform.

[29] Is this musically justifiable? Can we really equate the musical progression from c1 to c2 with that from c2 to c3? Does it
make sense to invoke split or K-net transformations when, in fact, the latter pair can be modeled by simple transformations?
Intuitively, I want to answer “no” to all these questions despite the fact that Figure 15 is consistent both in the way that it
parses the music and in the transformations it shows. In the culture of music analysis, it generally seems desirable to show
uniformity wherever possible. There can be little doubt that these three motives are manifestations of the same basic musical
gesture, but that musical sameness is not well  modeled by <T >. What c1, c2,  and c3 share is  intervallic and contour
similarity within each motive; what <T > implies is some similarity in the distance that separates them.

[30] Sometimes, in an effort to consolidate, too much information can be packed into a single number. (22) Because <T >
(or,  more  generally,  <T >)  can  be  realized  along  a  wide  variety  of  split  transformational  paths,  I  propose  a  modest
elaboration on K-net transformational labels that recognizes their constituent dual transpositions or dual inversions. Rather
than  merely  showing  <T >,  I  would  prefer  to  stipulate  <T >  (0+2),  <T >  (7+7),  or  any  of  the  other  possible
combinations (there will  be six,  seven, eleven, or twelve combinations,  depending upon whether n  is  even or  odd and
whether we choose to differentiate between, say, 0+2 and 2+0). This amendment would allow us to preserve the broad
category of K-net hyper-transformation while adding a level of meaning and transparency that would help us understand just
what combination of elements led to the <T > designation. We might even expand our selection of adjectives to include
“consistent,” “grand,” or even “super-strong” to describe isographies that maintain the same dual transpositions.

[31] Including such information would surely help anchor this analytical nomenclature a bit more firmly to the musical
surface. And, if not treated as merely ancillary data, appending the dual transformational basis of each hyper relationship
might well temper, if not assuage, a number of the criticisms found in the next section of this article. An aside: I mentioned
earlier that part of transformation theory’s appeal is its apparent dynamism. We often claim that it not only models and
compares the contents of particular structures, but rather how it is that we move from one structure to another. (I have again
shifted  from  transformational  structuralism  to  the  common  metaphor  of  motion  that  often  drives  transformational
narrative.) In any case, <T > really is a comparison of two internal network structures. It tells us nothing about the path,
whereas  the  specific  split  transforms  do,  and  they  therefore  seem  more  amenable  to  the  often-kinetic  language  of
transformational analysis.

II. Relational Abundance (Promiscuity)

[32] Because any pcset can form multiple K-net interpretations, many pairs of pcsets can be molded into multiple different
isographic formations. Indeed, there are far more possible K-net isographies than canonical ways to relate pcsets.  This
abundance of potential relations could be cast as either a problem (what O’Donnell has deemed “promiscuity”) or a feature,
highlighting their inherent flexibility. Inasmuch as K-nets are considered musical interpretations, I am inclined to view their
abundant relatability as a good thing. However, when we start talking about K-classes (as does O’Donnell) and especially
K-families (as does Lambert) and when the local K-net interpretations do not model salient surface events, I find myself
forced to think of them abstractly, in the same basic way as I think about set classes. The operative analytical question shifts
from “how can we represent  the evident musical  voice leading or motivic  relationships?” to “can these  two pcsets  be
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diagrammed in such a way that they appear isographic?” When I am led to consider the second question, I find relational
abundance problematic.

Three-Node K-Nets

[33] Pairs of trichords can be interpreted as isographic K-net structures in numerous ways. If two trichords (or a trichord and
a dyad) share even a single interval class, they can be shaped into a pair of isographic networks, and that isography can (willy-
nilly) be construed as either positive or negative. As mentioned earlier, an interval can be thought of as a static thing: a
distance that simply exists between two notes; or as a dynamic thing: a transformational force that maps one note onto the
other. One shared interval translates to one shared T  arrow, and that is sufficient to draw network isography.

[34] We can think of that common interval more generically as a common interval class (rather than a pitch-class interval
with  range  0–11),  since  the  distance  between  any  two  pcs  X  and  Y  can  be  calculated  by  moving  clockwise  or
counterclockwise along the proverbial pc clock. If it helps to visualize arrows, a single T  arrow can point from pc X to Y or
from Y to X. The distance from X to Y is inversely related to the distance from Y to X, so it follows that drawing negative or
positive isography purely reflects an analyst’s discretion and is not inherent to any pair of 3-note pcsets that share an ic.

[35] There are 78 possible pairs of trichords (12+11+10+ . .  .  1) using T I equivalence—which is  the only reasonable
standard since interpreting a trichord as a dyad plus a singleton will always allow for inversional equivalence (this is not the
case with larger scs). Among those 78 pairs, 65 (78.8%) can form isographic K-nets. Those odds of finding isography seem
quite high to me, but Stoecker essentially casts the thirteen sc pairs that resist isography as a limitation of the system—one
that he effectively alleviates in introducing axial isography. (23)

Nonetheless, strong, positive, and negative isography have their limitations. Isographically related trichordal
K-nets  are  restricted to  collections  that  share  an interval  class  (ic).  For  example,  since  {C,  E,  G },  an
augmented triad, contains only ic4, it cannot be isographic with {C, C , D}, a chromatic collection which
does not contain any ic4s. As a result, the K-nets that interpret {C, E, G } and {C, C , D} will not have
similar or complementary T-labels, a prerequisite for strong, positive, and negative isography. (Stoecker 2002,
233.)

[36] Stoecker (2002) charted all potential trichordal K-net isographies and I have reproduced and expanded his table in my
Figure 16, which provides a more detailed view of what is possible when comparing particular dyad- and trichord-classes in
three-element networks. (24) The shaded area of this chart clearly shows that not every trichord is equally relatable. [026] can
be thought of as something like an all-interval trichord because its elements are separated by one instance of each even ic (2,
4, and 6). Since there are no trichords or larger scs that only include odd ics, once [026] comes to the party, every other
trichord enjoys at  least  one mutual  relation. (25)  [013],  [014],  [015],  [025],  and [037]  are  almost  as  promiscuous:  each is
unrelatable to only a single other trichord. At the other end of the spectrum sits [048] (the uni-interval trichord). But when
even it can be isographic with half of its peers, I would suggest that we have a low standard for relatedness.

[37] Since the most promiscuous trichord classes include many of the most common and familiar melodic and harmonic
structures found in a wide range of repertoire, trichordal isography generally comes easily to those who seek it. When the
standard for pcset relatedness is this low, analysts ought to exercise particular diligence and discretion in making a strong case
for the uniqueness and musicality of their readings. (26) Though segmentation is not explicitly a topic for this critique, it is
only through sensitive segmentation (which must, in turn, rely upon musical parameters other than pc) that three-node K-net
analysis  can  seem  compelling.  With  the  addition  of  O’Donnell’s  “double  emploi,”  by  which  two  different  K-net
interpretations of a single set allow isography with a pair of otherwise non-isographic K-nets, the standard for relatedness
slips further. And with Stoecker’s axial isography, relatedness is even more commonplace.

[38] At this point, it bears repeating that I do not think relational abundance is inherently problematic as long as each relation
drawn seems musically motivated. My criticism is therefore aimed at neither Klumpenhouwer’s isography nor Stoecker’s axial
isography. Rather, I am skeptical of their use to create overly broad pcset equivalence classes and, especially, of any analytical
application founded on the use of such classes. (27)

Larger K-Nets and the Issue of Consistency

[39] As we move beyond 3-node K-nets, the promiscuity problem is compounded (or perhaps displaced) by the issue of
consistency. Four-node networks, for example, can be formatted in two different ways: either like a box, where the two
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T-arrows bind complementary dyads or like an umbrella, where the two T-arrows bind three notes, omitting a single note. In
other words, tetrachords can be split into either a pair of dyadic T-sets or into one trichordal T-set and a singleton. These
two configurations are shown in Figure 17.

[40] In published K-net analyses, these two configurations are treated similarly. Using O’Donnell’s double emploi, we could
even relate one configuration-type to another. But they are not at all equivalent in relational potential. Think about how
common it would be to reach blindly into the bag of all tetrachords and pull out two that shared a pair of non-overlapping
interval classes (in this case an ic2 and an ic4) compared with the probability of pulling out two tetrachords that mutually
embed a single transpositionally defined trichord class (in this case [023]). Moreover, because isography among box-style
4-node K-nets relies only upon two common ics, such isography can (as with trichordal K-nets) be shown as positive or
negative at an analyst’s whim. This is not the case with umbrella-style K-nets.

[41] The standard for K-net relatedness can vary wildly, especially when we interpret larger pcsets, and this seems more
troubling than the simple issue of relational abundance. Under such conditions, it can be tough to contextualize your work
and discover how significant your analytical claims might be.

On Multiple Interpretations

[42] Consider the opening motto of the tune “A Night in Tunisia” by Dizzy Gillespie. The excerpt is shown in Figure 18,
divided into two four-note segments marked α and β. Again, isography can be drawn if α and β are each divisible into two
segments {α1, α2} and {β1, β2} and there are canonical operations that map α1  β1 and α2  β2. α and β are not wholly
related under any individual canonical operation, which is also typical for K-net analysis. Since the canonical operations at
play are conventionally transposition and inversion, we can say that while α and β are not members of the same T /T I sc,
they can each be split such that sc(α1) = sc(β1) and sc(α2) = sc(β2).

[43] There are three ways in which α, a member of sc 4-14 [0237], and β, a member of 4-4 [0125], can be divided into
equivalent sc pairs. Figure 19 displays these partitions and Figure 20 reconfigures them into pairs of isographic K-nets
(shown in my preferred dual-transformational orientation), depicting the five possible K-net transformations that map α
onto β. As mentioned above, box-style K-nets can be shown to display either positive or negative isography, which is why
there are five, not three, possible isographic interpretations.

[44] Taking a tour around Figure 20, I will attempt to provide brief appropriate analytical narratives to substantiate each of
these network interpretations. In interpretation I, we could draw out the connection between local T  arrows that could be
inserted in the top T-sets of α and β and the <T > transformation between α and β. Finding such correspondences between
pc  transformations  and  network  transformations  is  an  important  step  in  constructing  recursive  network  structures.
(Recursion will be discussed in the last section of this article.) Interpretation II has little potential for recursion, but one
could draw attention to the fact that the transformation <I > finds pc correspondences in the intra-T-set relationships (one
in α {D , F} and one in β {G , B }). Interpretation III can claim a more significant phenomenological connection between
pc and network transformations: <T > might seem more T -ish because it is formed by a combination of a T +T  split
(similar to the relationship between c1 and c2 in Figures 14 and 15). Its inversional counterpart, interpretation IV, might be
even slightly more impressive in this regard. Both T-sets in α, members of scs [01] and [05], are inverted in p-space onto the
T-sets in β: the <D , C> major seventh maps to the <G , A> minor second and the <B  up to F> perfect fifth maps to the
<B  down to F> perfect fourth. Finally, interpretation V carries the weight of embedding a mutual trichord class.

[45] How do we make an interpretive decision when faced with these five choices? Do we aim to show consistency between
levels of transformation (recursion) or do we try to choose the one that seems most musically appealing? Unfortunately,
none of these five choices represents the musical surface very well because each partitions these two segments inconsistently.
The [02] dyad (or T  arrow) spans the first and fourth pcs in α and the first and third pcs in β; the [04] dyad spans the
second and third pcs in α and the second and fourth pcs in β; the [01] dyad spans the second and fourth pcs in α and the
third and fourth pcs in β; and so forth. It would, in other words, be difficult to attend to the small-scale transformations that
any of these networks portrays. When the constituent transformations are relatively abstract, it would be formidable to hear
what any of the large-scale isographies represents. Despite this lack of surface support, my earlier analytical statements—at
least those about interpretations I, II, and IV—might sound persuasive, especially when coupled with networks that seem so
visually appealing.

[46] After the musical surface has been segmented and its fragments have been interpreted as pcsets, networks, or any other
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abstraction, we often allow ourselves to lose track of the score, almost as if its purpose has been exhausted. This is a danger
with any analysis that replaces music notation with non-music symbols, but it is particularly easy to fall into with K-nets, both
because the network structures can be shaped and reshaped like modeling clay and also because they inherently require one
to focus upon a single parameter. Again, I am advocating neither specificity over generality nor any particular mode of
analytical representation. However, I do believe that the more abstract our tools and the greater the potential for relational
abundance, the more meticulous we ought to be about demonstrating the musical relevance of our analysis.

[47] Before moving on, it seems worth asking one more question of the analytical interpretations presented above, and it is a
question that could rightly be asked of any essentially motivic analysis: why exactly are we trying to relate these two musical
segments? They are temporally adjacent, and together they form a motto that is repeated three times during the first six
measures of the song, but do they exhibit any common musical features (beyond some shared interval classes) that lead us to
consider them as a pair of similar or equivalent motives? If the answer is “no,” is it only our abiding fondness for organicism
that drives such motivic analysis?

[48] Contrived examples like the one above allow one to stack the deck a bit, so it seems only fair to bring a published K-net
analysis into the critical mix. Henry Klumpenhouwer’s reading of Webern’s Piano Variations, op. 27, mvt. 3, measures 1–12
provides  a  far  more  compelling  musical  analysis  than  the  one  I  created  above. (28)  Klumpenhouwer  enumerates  many
network possibilities and two distinct partitional schemes. He invites us to hear and understand this excerpt in multiple ways,
yet the analytical paths that he ultimately follows seem to prioritize uniform network (and hypernetwork) structures over
motivic consistency.

[49] This musical excerpt is a particularly good one for demonstrating the potential value of K-net or split transformational
analysis.  The  first  twelve  pitches,  shown in  Figure  21,  most  obviously  divide  into  four  trichords,  each  featuring  two
identically articulated tones that span eleven semitones and a third “odd” tone that is articulated differently. (29) (I have drawn
these arrows onto Klumpenhouwer’s example.) This twelve-tone movement does not use a derived row. Rather, the four
trichords instantiate four different set classes: [015], [012], [013], and [014], respectively. Given this musical scenario, one
might expect to see four isographic K-nets, each featuring a single T  arrow.

[50] After providing six different well-formed K-net interpretations of the opening three notes (featuring T , T , T , T ,
and T  arrows), Klumpenhouwer ecumenically claims that none of the displayed networks “has inherent analytical value
over  any  other:  a  given  interpretation  may  be  more  or  less  suggestive  or  useful  depending  on  a  particular  analytical
context.”(30)  These  six  networks  are  reproduced  in  Figure  22.  While  I  admire  this  apparent  analytical  flexibility  and
openness, I nevertheless disagree that every interpretation carries musical (much less equivalent musical) potential. It does
not seem at all unjust to give priority to those interpretations that noticeably jibe with shared musical features (such as pitch,
interval, contour, rhythm, or timbre).

[51] Although Klumpenhouwer does eventually arrive at a network analysis that includes a T  arrow in each trichordal
representation (his  Example 14 on p.  30,  reprinted as  our Figure 23),  the  second trichord (a  member  of  sc  [012])  is
partitioned differently than the others, with the T  arrow drawn between two differently articulated pitches (D and C ). The
apparent reason for this re-reading is to show strong isography (<T >) between the first and second trichords. In this case, it
seems that interpretive decisions are steered by a desire to show the sort of unity that K-nets best represent.

[52] In the second half of his article, Klumpenhouwer interestingly re-reads the first twelve notes as segments of 4+5+3
notes. Though his segmentation brings out different (and noteworthy) properties of the row and its musical realization, in
producing commensurate (five-node) networks, he interpolates repeated pitch classes in the networks that represent the
trichord and the tetrachord. Because there are no repeated pitches or pitch classes among the first twelve notes of the music,
these networks compel one to imagine a musical scenario that does not exist. One could argue that repeating pitch classes
offers  a  greater  variety  of  relationships  among  notes  in  a  musical  segment,  but  that  ability  is  (necessarily)  applied
inconsistently and arbitrarily. (Klumpenhouwer 1998, 33–37.)

III. The Phenomenology of Displaced Pitch-Class Inversion and Dual Inversion

[53] The previous section included a call for some phenomenological grounding when the objects of analysis seem both
malleable  and distantly  removed from the musical  surface.  When the T-sets  that  form K-nets  are  presented in  similar
registers, timbres, dynamic ranges, etc., K-nets (or dual transformations) can be very compelling. Catherine Nolan presented
an  exceptionally  well-grounded  K-net  analysis  of  Webern’s  Das  Augenlicht,  op.  26,  at  the  2005  Dublin  International
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Conference on Music Analysis. She analyzed the work’s five a cappella choral passages, and in each case where K-nets were
used  the  T -arrows  were  drawn  between  the  upper  two  voices  and  also  between  the  lower  two  voices  (in  our  dual
transpositional  terms:  the  T-set  pairs  were  always  formed  from  the  SA  and  TB  parts).  Moreover,  the  intervals  of
transposition were literally projected in p-space, and her graphical display maintained registral integrity. Nolan’s Examples 1a
and 1b are reproduced in my Figure 24.

[54] But even in a situation that is this musically clear, I still wonder whether there is much that is T -like about the <T >
(hyper) transformations that connect all but one pair of adjacent chords in this example. Again, <T > signifies that T-sets
move in a lopsided inversional balance that is skewed by three semitones. But in this case (which is, again, about as musically
clear as any example I know), it might be more phenomenologically appealing to depict the progression from chord 1 to 2 as
“almost T ” or “almost T ” transpositions in the spirit of Straus’s fuzzy transformations. (31) After all, the entire texture
ascends: the top voices by one semitone; the bottom voices by two semitones. On the other hand, the motion between
chords 2 and 3 seems more inversion-like since the women’s and men’s parts move in contrary motion. But I again wonder
whether one can musically imagine a split T /T  (or T ) transformation as <T >, and how do we conceive of this <T >
as equivalent to the <T > (T /T  split) that separates chords 1 and 2?

[55] I have no objection to Nolan’s basic analysis, which I find elegant and musically astute. She does not dwell on these
displaced inversions, but rather focuses on the dual transpositions. Even so, K-nets (as they have been traditionally drawn) at
least implicitly lead one to think about displaced inversion axes. As I mentioned earlier, I suspect that too much information
has been packed into a single number and I would rather differentiate these <T > transformations by highlighting their
inherent  split  transformations:  <T > (1+2) and <T > (4+11).  Of  course,  doing  so (and thereby  embracing a  “grand
isography”) would raise the standard for relatedness, making truly equivalent transformations far more exceptional.

[56] As challenging as it is to construct aural images of displaced pc inversion, as represented by <T > transformations, the
notion of dual pc inversion implicit in <I > transformations seems far more problematic. Dual pc inversion can be hard
enough to hear (or even to imagine hearing) when not realized as musical wedges, and when I think of one part of a chord
being transformed by I  and the other part moving by I , I can only concede that I would have problems detecting that
relation in most musical situations. When we further stipulate that the I /I  dual transformation is only one manifestation of
the <I > hyper-transformation, I find myself wondering whether there is any distinctly <I > (or <I >)  sound.  Straus
vividly encapsulated this problem: “ . . . this poses severe perceptual problems, not just the old ‘can you hear it?’ but rather
‘what are we even supposed to be listening for? How can we hope even to conceive the relationship mentally?’” (32)

[57] Of course, I would not want to limit my collection of analytical tools to those that represent things I can always hear.
But,  again,  when  various  transformations  can  be  used  in  a  single  musical  situation  and,  conversely,  when  single
transformations can model a wide variety of musical situations, I do at least want to maintain the possibility of leaning on my
own musical  sensibilities to select  among my options.  Otherwise,  I  fear  that  my analyses would be modeling neither a
composer’s design nor my own musical interpretation. (33)

[58] The K-net literature includes a great many appeals to perception—to “hearing” particular K-net interpretations. Indeed,
almost every scholar who has analytically applied K-nets has mentioned audibility, at least in passing.(34) The issue here is not
whether K-nets can be used to model an aurally salient passage. Rather, the question I am invariably left asking is whether
those salient aspects might more clearly be modeled in some other way. It would be difficult to imagine a situation in which
dual transformation did not provide a more straightforward phenomenological account than K-nets.

IV. Hierarchy and Recursion

[59] One could avoid the particular phenomenological problem of dual inversion by resolving to employ only positively
isographic  K-nets,  but  doing so effectively  forfeits  one’s  ability  to  produce recursive  network structures,  and these  are
perhaps the greatest incentive for using K-nets in the first place. “Recursion,” in the K-net sense, refers to networks of
networks,  or  a  grouping  of  K-nets  arranged  such  that  the  transformations  between  selected  K-nets  mimics  the
transformations within a single constituent network. Lewin demonstrated recursive network structures and not only made
the case for drawing out such hierarchies, but for using them as the basis for selecting among interpretive choices at every
level of analysis. (35) Such a recursive structure is shown in Figure 25, which brings together a number of examples from
Lewin’s 1994 K-net “tutorial.” Together, these examples illustrate the various stages in moving from surface-level K-nets to
deeper-level ones.

n

3 3

3

1 2

4 -1 11 3 3

3 1 2

3

3 3

n

n

5 8

5 8

1 1 n

11 of 19



[60] Lewin’s textural reduction in Figure 25a clarifies his split-transformational view of this progression from Schoenberg’s,
op. 11, no. 2 piano piece. The notes in the upper staff are consistently separated by some manifestation of ic5, and the alto
clef notes are consistently separated by some manifestation of ic4. Again, with any pair of invariant interval classes, network
isography can be drawn. But how does one decide when, for example, to draw T  arrows and when to draw T  arrows?
Intuitively, I would probably answer that question in one of two ways: 1) we should call the treble-clef intervals uniformly T
or uniformly T  and the alto-clef ones either T or T  (this way is arbitrary, but consistent); or 2) we should try to have our
networks reflect the musical surface to the greatest degree possible. Answer #1 reflects Lewin’s initial network drawings,
shown in Figure 25b; the latter answer would probably entail a K-net interpretation like that shown in Figure 26, where I
have simply replaced Lewin’s and Klumpenhouwer’s nodes with my T-sets. The constituent T-sets are ordered from low to
high to reflect Lewin’s musical realizations (though not the actual musical surface). Although this captures Lewin’s musical
reduction of this passage, it does not allow isographic relations either from g1 to g2 or from g2 to g3 (although Stoecker’s
axial isography would give us a way to relate these chords). (36)

[61] Ultimately, Lewin chooses neither the structural consistency of Figure 25b nor the p-space consistency of Figure 26. His
larger purpose in this tutorial was to show hierarchies of network structures and how networks of networks can replicate the
design of the their constituents. However, to show these hierarchical “hyper-networks” we need the same distribution of
<T> and <I> relations as we have of T and I relations within a single network. Since all K-nets are, by definition, formed by
some combination of transposition and inversion, all hyper-networks must comprise both positive and negative isography.

[62] To construct a network of chords g1 through g4 that looks like any of the networks that interprets g1, g2, g3, or g4,
Lewin needed to reconfigure two of the chords to form negative isographies. Because he uses the box—not the umbrella
—configuration, both dyads within a network can be flipped to construct mirror-image K-nets. As mentioned in the section
on relational abundance, any four-node box-style (#2+#2) K-net can be reconfigured to form its own inversion. Figure 25c
compares g1 and g2 to their inversional doppelgangers, g1′ and g2′. (Again, it is only the graphs, not the pcsets, that are
inversionally related.) A final hyper-network that interprets g1′, g2′, g3, and g4 in a way that is strongly isographic with g1′ is
shown in Figure 25d. (37)

[63] One reason that I admire Catherine Nolan’s analysis (reproduced in Figure 24 above) is that she used K-nets without
drawing out recursive relations. Indeed, her networks could not be placed into a hyper-network without reconfiguring some
of the local structures in ways that obscure their p-space realizations. Forming recursive K-net structures would not only be
arbitrary  in  such  an  instance,  it  would  necessarily  represent  weaker  musical  relationships  than  actually  exist.  This
circumstance hardly seems extraordinary. Rather, I have trouble imagining instances in which recursive K-net structures
would portray stronger relationships (at least experientially) than would K-nets related exclusively by <T >.

[64] At the beginning of this article, I quoted Straus’s comment that recursion is only problematic “when our desire for it
leads us to emphasize musical features that might otherwise be of relatively little interest.” (38) But there are more frustrating
and systemic problems with recursion than the unpleasant by-product Straus mentioned. Recursive analysis requires us to
locate positive and negative surface-level isographies in the same quantity as shown in any one local K-net. This often entails
skewing surface readings into representations that simply provide the right type of graph to fit the situation.

[65] A more pragmatic problem that arises when constructing K-net superstructures is that K-nets of size q must be grouped
into q-sized hyper-networks for recursion to be drawn. Extended outward, q-sized K-nets must form into hyper-networks of
size qn, where n is an integer that reflects the recursive level and “size” refers to the number of pcs in the network or hyper-
network. There are not many musical situations where q-note chords cluster into q-chord progressions (and q progressions
of progressions, and so on). Therefore, musicians who choose to frame their analyses around hyper-networks are often left
with the choice of selectively omitting some chords or reusing some chords in other structures.(39) And, of course, all chords
need to contain the same number of notes or else some notes need to be duplicated within a surface K-net, since no one has
yet suggested a way of relating different sizes of networks. (40)

[66] But still a larger problem with K-net recursion has to do with what it inherently shows. Lewin and others have compared
hyper-networks and hyper-hyper-networks to the levels in a Schenkerian analysis. Though Lewin admits that this similarity is
structural and not phenomenological, likening network and Schenkerian levels is misleading. (41) Every level of a Schenkerian
analysis (except, perhaps, the ultimate “chord of nature”) relates the same sorts of objects. A tone and/or harmony found on
the middleground should be present (or at least be implicit)  on every shallower level,  and every level of a Schenkerian
analysis  details  tonal  and  contrapuntal  relationships.  K-net  hierarchies  yield  no  such  consistency.  The  objects  of  a
“foreground” K-net are (generally) pitch classes and the transformations that map those pitch classes to each other; the
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objects of a “middleground” K-net are transformations and the transformations that map those transformations to each other.
At  every  level  other  than  the  “foreground,”  K-nets  interpret  increasingly  abstract  relationships  of  relationships,  not
relationships of notes or pitch classes. In Schenkerian analysis, notes are present at every level and pitch structures are never
replaced by relational structures.

[67]  This  flawed  analogy,  however,  seems  less  troubling  than  the  more  primary  supposition  that  K-nets  group  into
meaningful hierarchies. O’Donnell also expressed this in his dissertation, calling the levels “non-hierarchical because they
model different aspects of the music, and one interpretation does not subsume the next as in a Schenkerian graph.” (42) This
is why I disagree with Lewin that hyper-networks can provide a compelling rationale for interpreting surface structures. For
that matter, I think that persuasive Schenkerian analyses generally do not (and should not) use middleground evidence to
support and arrive at foreground decisions. Such top-down approaches to analysis often lead us to find only that for which
we are looking.

[68] For all the structural elegance of recursive networks, they force analysts to abide by quite a few arbitrary limitations.
These  include  the  number  of  networks  that  can  be  related  in  a  particular  setting  and  the  quality  and  variety  of
transformations that may be included in those settings. Although there are numerous ways to draw any particular K-net, and
that flexibility makes it relatively easy to generate local isographies, when we start building hyper-network structures, we also
force ourselves to designate a single K-net as the sort of mother network, and that priority does not need to be grounded in
musical salience. That, combined with the musical incommensurability of upper- and lower-level structures, is why I find
recursion unconvincing and even potentially detrimental. In the first section of this article, I proposed redrawing local K-nets
as dual transformations and dropping the internal I-arrows that point from one T-set to the other. I mentioned that the sole
consequence of this simplification would be losing the possibility for recursive network analysis. It should now be evident
that I find that loss to be unproblematic.

[69] It seems to me that the greatest strength of K-nets and also of dual or near transformations lies in their ability to model
a common musical  situation:  that  of divergent motion in a  polyphonic space.  Although hyper transposition is  a  useful
addition to our canon of transformational descriptors, it does not uniquely rely upon the K-net design. We all have different
goals for analysis, but surely one central purpose is to clarify and explain. There may not be any inherently easy ways to
model difficult  music; I  just want to be certain that my analytical  tools help me elucidate more complexities than they
introduce. That might be the simplest and best reason to reconsider Klumpenhouwer networks.

Michael H. Buchler
Florida State University
College of Music
Tallahassee, FL 32306-1180
mbuchler@fsu.edu
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Footnotes

1.  Arguably,  they  have  seen  even  more  use  than  the  more  straightforward  network  structures  Lewin  described  and
demonstrated in Generalized Musical Intervals and Transformations (1987) and Musical Form and Transformation: 4 Analytic Essays
(1993).
Return to text

2. Here, and throughout this article, “chord” is used in the most generic way possible, as a synonym of “set” or “klang.”
Return to text

3. In some ways, the present essay is quite loosely modeled after William Benjamin’s insightful 1974 review of Allen Forte’s
The Structure of Atonal Music. (Perspectives of New Music 13:1, 170–190.) Unlike Benjamin, however, I am not critiquing one
person’s work. Rather, I draw upon the broadening K-net literature listed among my references.

Benjamin structured his review around six fundamental criticisms:

    “I. The Problem of Segmentation
    II. The Problems of Derivation and Order
    III. The Problem of Context
    IV. Neglected Aspects of Pitch-class and Pitch Structure
    V. The Problem of Explanation
    VI. The Significance of the Set-complex.” (177)

Many of Benjamin’s thirty-year-old criticisms can likewise be applied to K-net usage. Although this article raises different
issues (and also raises issues differently), many of Benjamin’s thoughtful lines of reasoning have inspired my own arguments.
Return to text

4. Straus 2003.
Return to text

5. As I was preparing my article for publication, one of MTO’s anonymous readers brought to my attention an unpublished
manuscript by Catherine Losada (2000). Losada kindly shared her work with me and I have tried to cite it in cases where we
have made common arguments. She is preparing a response to my article that will, I hope, bring many of her own strong
K-net criticisms to the fore.
Return to text

6. See S1, comment 1.2. One possible substitute for pc inversion is the circle of fourth and fifth transforms (M5 and M7).
However, since this article aims to critique K-nets as they have been used (rather than how they might be used), I will not
explore such alternatives herein.
Return to text
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7. O’Donnell calls these “Lewin networks” or “L-nets” (O’Donnell 1998, 53.)
Return to text

8. The ensuing discussion of Figures 7 through 11 will further demonstrate the necessity for understanding implicit relations.
Return to text

9. However, I  arrows are defining aspects of Stoecker’s “axial isography” (Stoecker 2002).
Return to text

10. Losada also makes this observation. (Losada 2000, 19.)
Return to text

11. Following a clear, if slightly inelegant, convention, I am referring to the values of the T  and I  arrows. In fact, such
statements should be understood to mean the value of n.  This corollary might be more clearly,  if clumsily,  rewritten as
follows: When the respective values of n  are identical in two K-nets’  T  arrows, but their  respective I  arrows  reflect
different inversional axes, the respective values for m will always differ by a constant value.
Return to text

12. More specifically, the number of distinct ways to partition an n-sized collection into T-set pairs = 2n-1 – 1. E.g., where n =
3, elements {a, b, c} can be arranged into three partitions (22 – 1): ab+c, ac+b, and bc+a. Where n = 4, elements {a, b, c, d}
can be arranged into seven partitions (23 – 1): a+bcd, b+acd, c+abd, d+abc, ab+cd, ac+bd, and ad+bc. 5-note collections
can be drawn as K-nets in 15 distinct ways, 6-note collections can be drawn as K-nets in 31 distinct ways, and so forth. By
“distinct,” I mean distinct pairs of (unordered) T-sets that fall out of any given K-net, not the number of specific orientations
of nodes and arrows (a far greater value). As such, ab+cd, ba+cd, ab+dc, and ba+dc are all manifestations of a single distinct
partition.
Return to text

13. This observation does not originate with this article. O’Donnell introduced the notion of “dual transformations” in his
dissertation, wherein he also made the observation that his and Klumpenhouwer’s models described the same phenomenon,
but that the latter “disguises the parsing with its unified graphic representation.” (O’Donnell, 48.) Earlier, Lewin implicitly
said the same thing when he, citing Klumpenhouwer, mentioned that isography can be attained in any pair of sets of size n
that either share a subset of size n-1 or share two complementary T-sets. (Lewin 1990, 90.)
Return to text

14. For simplicity, the graphed pcs are no longer encircled.
Return to text

15. Lewin takes a different path to arrive at the same pair of T-sets. See his Figures 6.3 and 6.4 and the text on pp. 215–217
in Lewin 2002.
Return to text

16. As such, my Figure 10 somewhat resembles Lewin’s Figure 6.6a (Lewin 2002), which isolates the same two pc collections.
Return to text

17. O’Donnell classifies the set of all positively and negatively isographic K-nets as a “K-net family.” O’Donnell 1998 (72-4)
and Lambert  2002 provide detailed elaborations on and enumerations of K-net families,  particularly  among three-node
networks. Members of a particular family are any K-nets (or the pcsets they interpret) that are formed by transposing or
inverting both constituent T-sets.
Return to text

18. Dmitri Tymoczko made this point quite lucidly, if informally, in a letter to smt-talk (Re: [Smt-talk] Dogmas 3,4 - GIS -
Interval fields. Smt-talk  listserve:  Wed, 24 Aug 2005.).  Others who have equated (or at least equivalenced) transposition
arrows and intervallic labels or dyad classes within the context of K-nets include Lewin 1990 (89), Gollin 1998 (40), Stoecker
2002 (233), Lambert 2002 (170), and Brown 2003 (47).
Return to text

19.  This  practical  concern  resembles  that  faced  by  analysts  who  syntactically  diagram  large  tonal  works  using  the

n

n n

n m

16 of 19



methodology enumerated by Lerdahl and Jackendoff in A Generative Theory of Tonal Music (1983).
Return to text

20. I have claimed that both the network-internal T  and I  arrows can effectively be replaced with intervallic and/or T-set
class designations. One might reasonably protest that while the T  and I  arrows seem a bit pedantic at the surface, they are
crucial  in drawing recursive transformations that mimic the “foreground” networks. This objection will  be discussed in
section IV of this article (on hierarchy and recursion).
Return to text

21. O’Donnell (1998) makes a similar claim. After illustrating how split transformations T /T  can be combined to produce
the K-net transformation <T >, which masks any dual musical motion, he comments: “Most significantly, the precise linear
transformation is irrelevant; the only requirement is that the two hands travel the same distance. In fact, c1  c1 is as much
<T > as c1  c2" (70).

Stephen Brown’s (2003) “dual  interval  space” (DIS) provides an altogether different,  if  complementary,  way of relating
chords that share two interval classes. For situations like those shown in the four-node (2+2) K-nets in Figures 4, 5, 6, 12,
and 13, his model arguably provides a more meaningful distance measurement than K-net transformations, though it is less
universally applicable.
Return to text

22. To be both fair and consistent, this same criticism could justly be leveled against my own earlier work on similarity
relations (Buchler 2000, 2001).
Return to text

23. It should be noted, however, that Stoecker only advocated using axial isography when the musical surface suggested
drawing such relations, not as an abstract prototype.
Return to text

24. The comparison of #3 to #2 pcsets is possible when one pc in the dyad is shown twice in the network. Though such
networks imply the presence of two pitch realizations of that duplicated pc (i.e., a multiset), the duplicate pc is often present
only in the analysis for the sake of relating different-sized sets.

An anonymous reader of this article pointed out a particularly disturbing consequence of arbitrarily double-counting a single
pc for the sake of comparing dyads to trichords: one could likewise double-count elements in two dyads, thereby comparing,
for example, an instance of [03] to one of [04]. In such a situation, one would only need to show mutual T  arrows in each
three-element dyad-class. Were we to adopt this standard (and the rationale for relating dyads to trichords strongly suggests
that we do so), any dyad could be isographic to any other dyad, and the chart of impossible isographies in Figure 16 would
seem even more barren.
Return to text

25. [026] is also embedded in nine of the 28 tetrachord classes, including the two all-interval tetrachords. There are no other
trichord classes that are embedded in as many as or more than nine tetrachord classes.
Return to text

26. Catherine Losada (2000) also argued for similar conditions for K-net “significance.”
Return to text

27. For instance, Michael Berry employed K-nets in a mod-7 space to interpret a composition by Hauer. Berry limited
himself to trichordal segments, and he worked entirely within pc space. In mod-7 pc space, there are only three interval
classes (not including ic0) and four trichord-classes: [012], [013], [014], and [024]. Mod 7 [013] includes instances of all three
interval classes; the other three trichord classes each exclude only a single ic. Because in this space no pair of trichords can
feature mutually exclusive interval content, every pair of mod-7 trichords can be related by K-net isography, and most pairs
can be related in multiple ways. Moreover, Berry used O’Donnell’s “double emploi” which, in mod 7 space, ensures that in
any progression of sets, each pair can be interpreted as positively isographic. When isography (or any other sort of relation) is
guaranteed, one could just as well say that nothing is particularly related to anything else. (Berry 2005.)
Return to text
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28. Klumpenhouwer 1998b. An earlier version of this analysis appeared in Klumpenhouwer’s (1991b) dissertation.
Return to text

29. More accurately, the second trichord features a 23-semitone leap (from C 2 to C4).
Return to text

30. Klumpenhouwer 1998b, 27.
Return to text

31. Straus 2003a.
Return to text

32. Straus 2003b. Losada likewise describes the problems of inversional relationships at different, and increasingly abstract,
levels of structure. She also compellingly problematizes the use of index numbers both locally and hierarchically. (Losada
2000, 16–19.)
Return to text

33. Vishio (1991) combines pc- and p-space to provide especially compelling network analyses that maintain relatively close
ties to the musical surface in his analysis of the first Fantasy from Martino’s Fantasies and Impromptus.
Return to text

34. Lewin’s expository article on K-nets includes a lengthy section on phenomenology. In his afterword, he comments:
“Initially skeptical about the analytic significance of Klumpenhouwer’s Networks, I soon became drawn into their study
myself,  and enthusiastic about their potential.  To some extent my conversion involved working out in my own terms a
phenomenology to support the implicit analytic assertions of the Networks.” (Lewin 1990, 115.) Other articles that appeal to
how we might hear K-nets interpretations include Lewin 1994 (79–86, 98–99), Klumpenhouwer 1998a (91–3) and 1998b
(24–6, 31–3), Vishio 1991, O’Donnell 1997 (71–2), 1998 (70), and 2005, Lambert 2002 (168–9 and 178–81), and Stoecker
2002 (236–9). Many more examples can be found; I arbitrarily limited this list to items already in the article’s bibliography.
Return to text

35.  Indeed,  Lewin  clarified  that  “the  recursive  potentialities  of  the  theoretical  apparatus”  was  his  contribution,  not
Klumpenhouwer’s. (Lewin 1990, 115.)
Return to text

36. Again, Stoecker only advocated using axial isography when the surface of the music suggested drawing such relations.
Lewin’s reduction (shown in Figure 25a) uses different clefs and noteheads (open and filled) to create segments that are not
obvious in the score.
Return to text

37. The graph in Figure 25d is only marginally different from the one Lewin produced in his Example 13 (Lewin 1994, 90).
His  hyper-network connects  g1,  g2,  g3',  and g4'  in  a  manner that  is  strongly isographic with g1'.  I  preferred explicitly
including the model network (g1') in the hyper-network.
Return to text

38. Straus 2003b.
Return to text

39. Lewin (1994) chooses both options in his analysis of the chorale from Schoenberg’s Opus 11, No. 2. In his Ex. 14 (p. 91),
he interprets chords 4, 5, 7, and 8 (omitting 6); in Ex. 15 (also p. 91), he shows two networks, interpreting chords 8, 9, 10, 11
and then 10, 11, 12, 13 (overlapping 10 and 11).
Return to text

40. As mentioned earlier, Klumpenhouwer (1998b) does relate a 5-note pcset to a 4-note pcset to a 3-note pcset, but he
needs to use entirely 5-node (2+3) K-nets in so doing. This means arbitrarily duplicating one pc in one of his networks, and
two pcs in another network. One essential problem with doing this is that the dyadic T-set in his 3+2 split is fully embedded
in its companion trichordal T-set. The doubly interpreted pcs are not repeated on the musical surface. (Klumpenhouwer
1998b, 33–35.)
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Return to text

41.  Lewin  wrote:  “When  a  lower-level  Klumpenhouwer  Network  is  interpreting  a  chord,  and  a  higher-level  network-
of-networks  is  interpreting  a  progression  of  chords  (more  precisely,  of  chord-interpretations),  I  noted  that  one  could
conceive of the higher-level network as “prolonging” the lower-level one, particularly when the given chord is part of the
given progression. This potentiality of the system, observed again and again in the article, can afford an especially compelling
rationale (albeit a non-phenomenological one) for asserting one particular Klumpenhouwer Network rather than another, to
interpret  a  given  chord.  I  found  it  suggestively  comparable,  methodologically,  to  the  ways  in  which  a  choice  among
foreground readings in a Schenkerian analysis can be influenced by middleground considerations.” (Lewin 1990, 115.)
Return to text

42. Backing away slightly, O’Donnell continued: “They do, however, suggest varying degrees of distance from the musical
surface, or varying locations on the concrete  abstract continuum.” (O’Donnell 1997, 66–67.)
Return to text
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