
[1] Near the beginning of his book Style and Music, Leonard Meyer repeats a parable told by the American philosopher John
Searle, describing what might happen when an intelligent observer who knows nothing of American football watches a game
for the first time. (2) To paraphrase somewhat, the observer watches a quarter or two of the game and eventually declares, “I
have figured out football. Football consists of a statistically regular alternation of circular clustering, linear clustering, and
random interpenetration.”

[2]  The  observer’s  description  of  football  is  not  wrong:  the  players  on  the  field  do  arrange  themselves  in  statistically
predictable ways as described. Clearly, though, this explanation misses the point of football in important ways. The statistical
phenomena it details are nothing more than incidental byproducts of the things that football is really about: the objectives,
the rules, and the strategies of the game, about all of which our observer remains blissfully clueless. In Searle’s terms, the
observer  has  noted  some superficial  brute  facts,  but  has  failed  to  account  for  the  deeper  institutional  facts,  which  create
constraints that shape the brute facts in essential ways.

[3] In my more cynical moments, I find myself suspecting (and this is Meyer’s point as well) that the understanding of music
displayed in much of what is said and written on the subject is ultimately not much better than this observer’s understanding
of football. We make many observations about music, and while these observations are usually correct in some sense, they
often seem to miss important points: we observe brute facts while remaining oblivious to more fundamental principles that
underlie, motivate, and explain those facts.

[4] Dmitri Tymoczko evidently harbors such suspicions as well, perhaps more often and more strongly than I do. While there
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are  some brute  facts  in  Tymoczko’s  new book A Geometry  of  Music  (henceforth  AGOM),  the  book is  set  apart  by  its
aspirations to unearth deeper institutional facts that others have overlooked. Tymoczko is unafraid to question conventional
wisdom, spurn the beaten path, and seek new viewpoints on familiar landmarks, and AGOM does not lack for bold claims
with far-reaching consequences. It promises nothing less than a rational foundation for tonality; a set of common principles
that unify the music of not just one or two centuries but broad swaths of music history spanning the better part of a
millennium; new perspectives on (among other things) scales, modulation, functional harmony, chromaticism, and the place
of jazz in music history; and a powerful, overarching geometric model that ties it all together.

[5] The reader who suspects that a book of 450 pages cannot possibly deliver on such a sweeping array of promises may be
surprised by the remarkable extent to which it succeeds. The geometric model that takes pride of place in the title is a
monumental achievement in its own right, and is brought to bear revealingly on fundamental aspects of harmony, voice
leading, consonance, tonality, and style, aptly illustrated through hundreds of figures and musical examples in a wide range of
styles. The upshot of it all is a book that occasionally vexes but more often illuminates, inspires, and exhilarates: a treasury of
big ideas, by any reasonable standard a major treatise for our field.

[6] The essential features of the geometric model are developed in the third of AGOM’s ten chapters, “A Geometry of
Chords.” The chord spaces described here have variously been dubbed “CQT spaces” (after the groundbreaking article by
Callender, Quinn, and Tymoczko, published in Science in 2008, expanding upon Tymoczko 2006), “OPTIC spaces” (after the
five kinds of  symmetries  the theory admits,  defined by equivalence under octave shifts,  permutation of  notes within a
collection, transposition, inversion, and cardinality change),  and “orbifold spaces” (after the mathematical  name for the
topological structures formed by these spaces, which in general are non-Euclidean and include singularities of various kinds).
These spaces may be thought of as adding a geometric component to pitch-class set theory, situating chords of n notes in a
continuous space (not a discrete lattice) in n dimensions, while taking into account any desired combination of the OPTIC
symmetries: for example, the notion of “pitch-class set” presupposes the O, P, and C symmetries, while the notion of “set
class” presupposes all five. Many of Tymoczko’s applications of the model depend crucially on its ways of measuring distance:
a voice leading is a path through an appropriately chosen OPTIC space, and the distance between any two chords in that
space  reflects  the  potential  to  connect  them via  smooth  voice  leading.  As  such,  the  OPTIC spaces  use  sophisticated
techniques from contemporary mathematics to pull together many threads from musical scholarship of the last half-century,
including set  theory,  scale  theory,  neo-Riemannian theory,  and an assortment  of  work on voice  leading and geometric
representations. (3)

[7] To say that the geometric model lies at the heart of the book would be accurate, but also misleading in at least two ways.
First, AGOM offers neither the first nor the most complete presentation of this model. Chapter 3 limits its scope to a few of
the most musically useful spaces in two, three, or four dimensions, and Appendix B provides only tantalizing glimpses of the
more general theory and some of the new considerations that arise in higher dimensions. Readers looking for coverage of the
OPTIC spaces in their full generality still have no alternative to the technical presentation in Science. Secondly, A Geometry of
Music is not a book about geometry; it is a book about music. More exactly, it is about the ways in which geometry can shape
and inform our understanding of  music—ways that  are  many and varied indeed.  Anyone who finds diagrams like  the
pitch-class circle, the circle of fifths, or the neo-Riemannian Tonnetz useful for visualizing aspects of musical structure should,
upon learning to navigate the OPTIC spaces, come to appreciate the varied perspectives and novel musical insights that these
spaces provide.

[8] An easily described example of such an insight—one of many that could be chosen for illustrative purposes—concerns a
relationship between voice leading and nearly equal divisions of the octave. Three-dimensional chord (OP) space, described
in Section 3.8, forms a triangular prism. Augmented triads, equal divisions of the octave into four-semitone intervals, lie on
the central axis of this prism, and major and minor triads, which divide the octave nearly equally, are grouped near this central
axis (see Figure 1). (4) It is a consequence of this geometry that every major or minor triad lies near several others, and in
particular lies near its T  and T  transpositions. For example, an E -major triad lies within one or two semitones’ total voice-
leading distance of two other major triads and five minor triads, and its nearest major-triad neighbors are G major and B
major (E -major and G-major triads are connected by the voice leading E –D, B –B). In contrast, a chord that divides the

4 8

2 of 8



octave less evenly, such as the trichord E–G –A, lies far from the central axis and far from all other chords of the same set
class (015): this chord does not lie within a two-semitone voice-leading distance of any other 015 trichords.

[9]  In  four-note  chord  space,  the  same  reasoning  shows  that  dominant  and  half-diminished  seventh  chords  (minimal
perturbations of the diminished seventh, the four-part equal division of the octave) offer the greatest potential for voice-
leading connections with other chords of the same type, and particularly with their transpositions by three semitones. The
repercussions of this difference for the way composers use triads and seventh chords are explored in section 3.10, titled
“Triads are from Mars; seventh chords are from Venus.” The claim here, supported by a table showing the frequencies of
root motions of triads and seventh chords in works by Schubert and Chopin, is that because of the voice-leading properties
just described, triads are more likely to be connected by major-third root movement, while seventh chords are more likely to
be connected by minor thirds. (5)

[10]  The  musical  ideas  that  Tymoczko draws  from geometric  inspiration  are  not  limited  to  the  ways  chords  move  in
chromatic space. The role of a chord in the above examples may be played instead by a scale, or more generally by what
Tymoczko calls a macroharmony, a collection of notes controlling the pitch content of music over a period of time. Studying
movement from one scale to another in an appropriate space provides a new way of thinking about modulation in traditional
tonal music (a modulation from C major to G major is a move from one seven-note collection to another nearby one), (6) or
of thinking about relationships between different types of scales in the music of Debussy, Shostakovich, or Reich. (7) In
Chapter 7 there is a proposed grammar of functional harmony based on the diatonic circle of thirds, which is roughly a
diatonic version of Figure 1’s graph of nearly even trichords.

[11] The musical examples that Tymoczko offers usually illustrate his points well, and it is enjoyable (and not too difficult) to
find more examples  to supplement them. (8)  Most  of  the examples  are  short,  and the book does not  claim to offer  a
comprehensive methodology for analysis of complete works, or even to recapture all that traditional analytical approaches
might tell us (nothing in the geometry, for example, differentiates the resolution of a tendency tone from any other stepwise
voice leading), but broader implications are not in short supply. If you are a composer, Tymoczko says, and if you want to
write music featuring a limited variety of chord types, connected by smooth voice leading, you will have more success if you
choose to use nearly-even triads or seventh chords than if you try to use uneven sets like 015. Precepts about compositional
strategy  permeate  the  book,  and  while  it  is  reasonable  to  wonder  how  many  composers  deliberately  formulate  their
objectives in such ways, the precepts reveal constraints that inevitably shape musical works whether composers are conscious
of  them or  not.  It  is  only  a  small  step  from compositional  strategies  to  broad  pronouncements  about  style:  it  is  no
coincidence, in Tymoczko’s view, that triads and seventh chords form the harmonic stock-in-trade of so much of our music.

[12]  The  music  in  which  we  most  often  encounter  triads  and  seventh  chords  is,  of  course,  tonal,  and  Tymoczko’s
generalizations apply mainly to music that is “tonal” at least in the broadest sense of the word. As early as page 4 of AGOM,
he identifies five features characteristic of “tonality” taken broadly. (These should be relatively uncontroversial; harmonic
consistency and smooth voice leading are two of them.) He revisits these features throughout the book, describing how their
interactions are constrained by geometry, and postulating that in various manifestations and combinations they characterize
an “extended common practice” that stretches from eleventh-century polyphony through contemporary jazz and delineates
the repertoire that is most compellingly illuminated by the geometric model. Music by Stravinsky, Glass, and Bill Evans, for
example, falls comfortably within this compass, thus addressing what Tymoczko perceives as a failing of his own musical
education, in which these composers were marginalized. (9)

[13] Every book is shaped by its author’s prejudices. Those who have followed Tymoczko’s career know that he has at times
been openly critical of some approaches to composition and musical scholarship, sometimes pointedly enough to discomfit
even those of us who share some of his reservations. AGOM’s attitude toward these topics ranges from entertaining barbs
(see the discussion of “atonal food” on page 392) to polite agnosticism (as in the discussion on pages 264–267 of the
compatibility  between  the  geometric  approach  and  “pluralist  Schenkerianism”)  to  benign  neglect  (David  Lewin,
transformation theory, and group theory are barely mentioned). Appendix C, “Discrete Voice-Leading Lattices,” criticizes the
neo-Riemannian Tonnetz as a voice-leading graph; the criticism is apt, but ignores the many other applications that interpret
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the Tonnetz and related graphs more abstractly, as depictions of intervallic or transformational structure in an algebraic sense,
more or less independent of voice leading.

[14] There is more than a little irony in some of these criticisms and omissions, as they involve some of the very giants on
whose shoulders Tymoczko is standing for his panoramic view. To the extent that the geometric model grows from set
theory, it  traces a fairly direct lineage to the work of Babbitt and Schoenberg, leading proponents of some of the only
important Western musical styles of the last several centuries that fall outside Tymoczko’s “extended common practice” (and
atonal music, after all, lives in the OPTIC spaces too). Four of the five OPTIC symmetries can be elegantly described in
terms of orbits of group actions, and it is hard to imagine that Tymoczko’s work could have unfolded as it did had David
Lewin not introduced transformation groups (and,  more broadly,  rigorous mathematical  thinking) into American music
theory in his own idiosyncratic way. Though AGOM is in many ways meticulously documented—Tymoczko is generous with
citations of opinions that differ from his own, and the bibliography fills ten small-print pages—it occasionally gives the
impression of disowning its own heritage, and therefore perhaps of being even more iconoclastic than it actually is. The level
of originality in this work is remarkable enough already, and hardly needs exaggerating. (10)

[15] Readers who may be inclined to bypass AGOM in the expectation that it will be forbiddingly technical should be assured
that it is not. Tymoczko confronts with apparent relish the daunting challenge of selling his ideas to a broad audience of
theorists, composers, musicians, and students, and his ability to capture the intricacies of complex material while presenting it
clearly and comprehensibly is praiseworthy. Some parts of the book are difficult, to be sure, but the level of abstraction
subsides fairly quickly after peaking in Chapter 3. Appendix F provides some pedagogically valuable exercises, most of them
pertaining to the most technical material in Chapters 2–4.

[16] In fact, the book has been taken to task in some quarters on the opposite grounds, for sweeping essential details under a
rug of too-casual narration. In a forum devoted to AGOM at the international conference of the Society for Mathematics
and Computation in Music (Paris, June 2011), a few attendees lamented the book’s lack of axioms, definitions, theorems, and
proofs in a formal mathematical style. (11) There are many pictures but almost no equations, and there are certainly times
when  group-theoretic  considerations  might  have  offered  valuable  alternative  perspectives. (12)  The  discussion  of  the
geometric spaces falls far short of the full generality of the OPTIC spaces, and a formal definition of orbifolds is nowhere to
be found. Tymoczko responded to such objections by saying that his exposition is modeled less on a mathematics textbook
than on writings in physics or other applied sciences, where authors routinely eschew the formal axiomatic style and present
only as much mathematics as is needed for the applications at hand. It is clear in any case that the sometimes opposing
demands of scope, technical accuracy, and readability require some balances to be struck in a book of this nature, and though
I sometimes find myself craving more detail, the author’s decisions are surely defensible.

[17] AGOM is enriched by two other ambitious undertakings on Tymoczko’s part. He makes available a custom-designed
software tool enabling visualization of chords in several geometric spaces; one can easily display the chords shown in Figure
1, for example, and rotate the picture in three dimensions to view it from different angles. (13) (There are also several ways to
view  four-dimensional  chord  space,  which  not  surprisingly  is  considerably  harder  to  grasp.)  Also,  various  points  are
supported by statistical analyses estimating the frequencies with which certain characteristics appear in the works of certain
composers or eras—a valuable if time-consuming technique that is slowly gaining a foothold in music theory scholarship. (14)

[18] The book as a whole is attractively produced, but in a work of this complexity some errors are inevitable. Fortunately,
most of the errors I spotted are of the sorts that many readers will likely pass over without notice or will correct with little
difficulty:  missing  words,  incorrect  note  names,  small  mismatches  between  example  and  description. (15)  With  a  few
exceptions, the musical and graphic examples are clearly and accurately rendered. (16)

[19] The potential audience for A Geometry of Music is as wide-ranging as the book itself. It was clear at the aforementioned
forum that Tymoczko’s work has earned great respect within the international community of mathematical music theorists. It
has  also attracted the attention of  at  least  a  few composers,  cognitive scientists,  and psychologists,  and Tymoczko has
apparently taught the material with some success to Princeton undergraduates. But the substance of the book is harmony,
counterpoint, tonality, scales—the stuff of music theory—and it is music theorists who stand to benefit the most from it.
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The indefinite article in the title perhaps tacitly acknowledges that no book can truly stake a claim to being the last word on
its subject, but this one provides the most definitive answers now available to many questions that music theorists have asked
and to many more that we didn’t know we had. If the author’s way of doing music theory or promulgating his results is not
quite like most of the music theory that we have learned and taught, that is hardly a sufficient reason why we should not give
his powerful ideas the attention they deserve.

Julian Hook
Jacobs School of Music
Indiana University
1201 East Third Street
Bloomington, IN 47405
juhook@indiana.edu
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Footnotes

1. The reviewer thanks Emmanuel Amiot, Scott Murphy, and Steven Rings for helpful conversations.
Return to text

2. Meyer 1989, 11–12, quoting Searle 1969, 52.
Return to text

3. The theory of orbifolds was developed by William Thurston in the late 1970s. The significant work on voice leading and
musical geometry includes, among others, Roeder 1987, Morris 1998, Douthett and Steinbach 1998, Straus 2003, Cohn 2003,
and notable contributions by the CQ portion of the CQT triumvirate, such as Callender 2004 and Quinn 2006 and 2007.
Return to text

4. To form the complete space, the two triangular ends of the prism in Figure 1 must be glued together with a twist, so that
the two corners representing the triple unison CCC are superimposed. The space is thus a higher-dimensional analog of a
Möbius strip; indeed, the analogous two-note chord space is precisely a Möbius strip (AGOM Figure 3.3.1).
Return to text

5. Of course, real music is messier than elegant theory. While it does show a statistical preference for chord connections of
the  sorts  Tymoczko describes,  the  table  (p.  99)  also  confirms  the  presence  in  the  literature  of  many  other  chromatic
progressions, including Martian-Venusian hybrids in which triads move by minor thirds or seventh chords by major thirds:
maximally smooth voice leading, evidently, is not always the paramount consideration in chord choice.
Return to text

6. In theory, diatonic scales inhabit a seven-dimensional OP space; fortunately, lower-dimensional spaces can capture the
essential features when only a few scale types are involved.
Return to text

7. Some of these insights were introduced in Tymoczko’s earlier work on scales (2004, 2008b), newly contextualized by the
OPTIC spaces.
Return to text

8. While reading AGOM I happened simultaneously to be renewing my acquaintance with the piano music of Gabriel Fauré,
and found time and again that the geometric perspective shed light on Fauré’s chromatic adventures. The middle section of
the Fourth Barcarolle, op. 44, modulates down repeatedly by semitone, tracing a clear path that winds down around the
central  axis  of  Figure  1’s  three-note  chord  space  (A –a –G +–G–g–G +–G –g –F +–F).  A  passage  in  the  enchanting
Prelude, op. 103, no. 3, presents an E -minor triad in alternation with four different seventh chords: they are C 7, F 7, A 7,
and D 7, all related by minor thirds and therefore closely clustered in four-note chord space. (Spatially proximate chords
often function in similar ways, and in many musical contexts a chord may often be substituted for one of its near neighbors.)
Return to text

9. This failing is addressed most provocatively in the Introduction (page xvii): “The music I encountered [in college] was the
music  my teachers  knew how to  talk  about.  Unfortunately,  this  was  not  the  music  I  had come to  college  wanting  to
understand.” More disturbing is the preceding paragraph’s suggestion that these eminent teachers “knew nothing about” the
music that most appealed to Tymoczko. Significantly, of the five features of tonality, the one that most sharply discriminates
the traditional “common practice” of the eighteenth and nineteenth centuries from the remainder of Tymoczko’s “extended
common practice” is centricity, which is also the feature about which the geometric model seems to tell us the least (although
the “pitch-class profiles” introduced in section 5.6 offer an interesting take on centricity).
Return to text
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10. In some cases, an apparent tendency on Tymoczko’s part to exaggerate the radical nature of his accomplishments may
have less to do with self-promotion than with a low threshold of radicalism. He has at times described as “radical” work by
various  other  people,  including  myself  (Tymoczko 2008a),  that  I  would  not  necessarily  describe  in  that  way.  Oxford’s
publicity for the book perhaps does not help by suggesting that Tymoczko has finally explained “what makes music sound
good.” A promotional blurb on the dust jacket unwittingly contributes a further hyperbole by describing Tymoczko as the
only member of “the intersection of those who are distinguished composers and those who have published in Science,”
overlooking Clifton Callender’s membership in that elite group.
Return to text

11. One commenter went so far as to describe the book’s style as “anti-intellectual.” (“I have been called many things,”
Tymoczko said in response, “but this is the first time I have ever been called anti-intellectual.”) Those who voiced such
reservations were, I believe without exception, European; some noted that a formal mathematical style of exposition is better
tolerated in Europe than in America.
Return to text

12. For example, an exercise in Appendix F asks the reader to explain why there are five efficient voice leadings that permute
three closely clustered notes in a four-note chord. The intended geometric explanation, involving paths reflecting off the
boundaries  of  four-dimensional  chord  space,  is  somewhat  hard  to  visualize  (though a  good exercise,  to  be  sure),  but
algebraically the reason is obvious: there are six permutations of three objects, including the identity.
Return to text

13. The ChordGeometries program is available at the author’s website (http://dmitri.tymoczko.com). Additionally, the book
has a companion website (http://www.oup.com/us/ageometryofmusic), where audio files corresponding to many of the
musical examples may be heard. The audio may be beneficial to those who have difficulty playing or aurally imagining the
examples, but the synthesized sound will be off-putting to many listeners, and there are occasional mismatches between
printed examples and their audio counterparts.
Return to text

14. Corpus studies are widely used in some other disciplines, notably linguistics, where it is widely recognized that the results
sometimes force scholars to challenge their assumptions and confront phenomena that might otherwise escape their notice.
A number of corpus-based studies of music have appeared in recent years; for example, Quinn and Mavromatis 2011 use
corpus-based analysis to shed light on syntactic differences between Bach chorales and a corpus of Lutheran chorales from a
century earlier. Tymoczko does not describe the methodology underlying his computer analyses in detail, and admits that it is
sometimes “simplistic but hopefully unbiased” (249). Occasional oddities in the results betray a lack of discernment in these
analyses. A table of modulation frequencies (251), for example, suggests that the major subtonic is one of the most common
goals of a modulation from a minor key; one suspects that most of these “modulations to VII” would be analyzed by most
theorists as tonicizations of V/III.
Return to text

15. Apologies are owed to Richard Rodgers and Gabe Fankhauser, whose names are misspelled, and perhaps to the girl of
Debussy’s eighth Prelude, whose title appears on page 324 as “La fille aux cheveaux de lin,” leaving us uncertain whether she is
in possession of flaxen hair or flaxen horses.
Return to text

16. In Figure 9.3.6 on page 328, the C  dorian and B harmonic minor scales are not actually connected by single-semitone
voice leading as shown. Two pages later,  Figure 9.3.10 is  uncharacteristically  problematic.  Some edges in this  graph lie
directly atop others in this perspective, obscuring the relationships, and unlike most other such graphs, this one is drawn so
that a particular voice-leading motion such as E –E is represented, at different places in the graph, by edges that are not
parallel. It does not help that some vertices representing scalar collections are unlabeled, and labels such as “DIA 5” are
somewhat opaque in the absence of actual pitch-class names.
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