
 

1. Introduction

[1.1]  Contour  theory  and analysis  has  a  multi-disciplinary  basis  in  music  research  with  significant  contributions  from

ethnomusicology (1), cognitive science (2), composition theory (3), music analysis (4), and music information retrieval. (5)  The

literature on melodic contour is unified by agreement that rises and falls in pitch are salient, but the type of comparisons

made (local, global, or all possible) varies widely. The most promising application of contour analysis is comparing melodic

segments that are perceptually similar (gestalt) but differ in interval content. Yet we lack formal criteria for picking out

segments from musical works to draw comparisons.

[1.2]  One of  the  most  useful  tools  for  describing contour and measuring similarity is  the COM-matrix  introduced  and

formalized by Robert Morris in his 1987 book Composition with Pitch-Classes (see Figure 1). A COM-matrix is produced by

making comparisons between all pitches in the segment up to the possible degrees of adjacency (from 1 to ). Two segments

of the same cardinality (n), whether found or generated, are considered equivalent if they produce the same matrix and sum

to the  same CSEG. If  not,  a  calculation of  similarity can be  made,  called CSIM  by  Marvin and Laprade (1987).  The

COM-matrix,  CSEG classes,  and  CSIM have  limited  utility  in  computational  analysis  because  of  the  need for  manual

segmentation. A computer must be told where to look and what cardinality to use. The COM-matrix also has a rigid standard

for  equivalence  (hence  the  need  for  CSIM)  and  does  not  accommodate  comparing  segments  of  different  lengths.

Furthermore, these tools are intended for highly varied pitch content and struggle with recurring pitches within a melodic

segment, which are likely to be found in tonal and non-Western musics. These issues—(1) segmentation, (2) equivalence, (3)
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cardinality sensitivity, and (4) pitch multiplicity—have motivated revisions and alternative formulations by theorists including

Robert Morris (who devised the COM-matrix), David Huron, Larry Polansky and Ian Quinn.

[1.3] Morris’s contour reduction algorithm (1993) provides a much less rigid form of equivalence and fully accommodates

comparison  of  different  cardinalities  of  contour  segments.  Through pruning all  but  time-  and height-extreme contour

pitches,  CSEGs  are  reduced  to  a  prime  of  two,  three,  or  four  elements.  However,  the  algorithm still  depends  upon

segmentation, and segments reduced to primes lose characteristics that may be important. Complexity is tracked through the

assignment of a depth based on the number of passes necessary to reach prime form. Still, Morris’s algorithm continues to

be a mainstay in music theory: it is central to recent dissertations by Schultz (2009), Bor (2009), and Sekula (2014),  and

Ohriner (2012) has applied it to rubato.

[1.4] A concurrent body of work on contour comes from computational (or systematic) musicology, and more recently music

information retrieval (MIR). Huron offers operational concepts of similarity, not restricted to contour, that make it possible

to “characterize degrees of resemblance” beyond “absolute matches” (2002, 21). The Humdrum Toolkit (1994) includes two

commands that can be used to calculate similarity between melodic contour segments, correl and simil.  The user has the

prerogative to set constraints on pattern matching, including assigning a penalty to deletions and insertions that make one

object more like another. Another method, implemented by Huron in Humdrum, is a reduction based on initial pitch, final

pitch, and the mean pitch in between, producing nine varieties of three-point gross shapes (1996). (6)  The reduction of

contour slices introduced in Section 7 of this article is more sympathetic to calculating an edit distance between segments of

cardinality 10 and 11 (as in the simil command in Humdrum) than reducing all segments under consideration to primes

(Morris 1993) or gross shapes (Huron 1996). Polansky’s “Morphological Metrics” (1996) is prolific in its formalization of

distance (or similarity) measures, and responds to the challenge of comparing different length “morphs.” Two ideas from

Polansky are particularly relevant to this article. First, the notion of “memory decay” motivates a weighting of combinatorial

direction (1996, 336), discussed in Section 2. Polansky also applies a moving window to an unsegmented pitch series to

measure contour, an innovation sustained in many computational approaches to contour, including this one. Aside from

important  formal  differences,  I  differ  from  Polansky  in  what  I  interpret  as  an  agnostic  view  of  segmentation  in

“Morphological Metrics,” specifically his “avoidance of the concept of inclusion” (1996, 293). Whether elements from an

entire structure (melody) also belong to substructures (melodic segments) is an important question. I posit that there are

segmentations that optimally reflect composer intentions and listener capacities, and that these can be modeled through

computation.

[1.5] In this article, contour recursion is proposed as a basis for melodic segmentation of musical works and a computational

method. Formally, this methodology is embedded in contour matrices (Morris 1987), summations of matrices (Marvin and

Laprade 1987), and binary contour comparisons (Quinn 1997), along with the widely used signal processing techniques of

windowing (applied to contour previously in Polansky 1996). Here contour recursion refers to any pattern of ups and downs

found at multiple indices in an ordinal pitch series. Non-adjacent pairwise comparisons are made, but these are within a

constant window of degrees for which cardinality is a consideration but not a determinant.  At its most basic level,  the

segmentation algorithm seeks to describe a large portion of a monophonic signal with a small number of repeating patterns.

The process  can be refined by  using  a  larger  or  smaller  window of comparison,  reducing local  recursion,  allowing or

prohibiting overlapping iterations, setting a minimum cardinality, excluding segments that span gaps in the series (rests) or

not, and so on. Reliance on information that may not be available depending on the source (symbolic or recorded)—such as

meter, articulation and dynamics—is intentionally avoided. Consideration of non-pitch features would generally improve an

analysis based on the methods in this article, and to a limited extent durational information (gaps between offsets and onsets)

is used. In Marvin (1991), analysis of melodic contour and durational contour are complementary, which would be a first

step in expanding this method. It is expected that segmentation based on contour recursion is relevant to other dimensions

of sound. However, because the intent is to present a carefully formalized and applied theory, limiting the discussion to one

dimension reduces the number of variables and functions that need to be defined. All that is needed to apply this method in

its current form is a series of pitch values ordered in time with onsets and offsets. Pitch can be measured in semitones

(C4=60) or as frequencies (Hz), but should not be reduced by octave equivalence or to any particular tuning system. If a

finer  resolution  than  semitones  is  needed to  distinguish non-equivalent  pitches,  then  frequency should  be  used.  Time

information can be in beats or seconds; it is simply used as a chronological index. The robustness of the segmentation

algorithm hinges on its ability to identify recursive patterns, recognize transformations, and compare segments of different

cardinalities. This last requirement is accomplished through reducing contour recursion locally, wherein an ascending scale

and an ascending arpeggio are both reduced to a cardinality of three (see Figure 7b and 7c, below). All of the component

functions of the algorithm are applied to a uniformly encoded contour matrix that lies between the note-to-note model of a
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contour adjacency series (Friedmann 1985) and the full combinatoriality of a COM-matrix.

2. Degrees of Adjacency

[2.1]  Within the music-theoretical  literature on contour,  there are generally  two factors to consider  in  making pairwise

comparisons between notes: (1) which notes to compare and (2) how to compare them. The contour adjacency series is a

note-to-note model (comparing only adjacent notes) that uses ternary direction [+, 0, –]. This is the model addressed by a

number of perceptual studies (e.g. Dowling and Fujitani 1971, Edworthy 1982). Morris (1987) and Marvin and Laprade

(Marvin and Laprade 1987) formalize an exhaustive combinatorial model, in which every note is compared to every other

note, also using ternary direction (see Figure 1). (7) The second factor—how to compare pitch height—raises the question,

What  is  contour?  Is  it  direction?  Or  is  it  direction  and  magnitude?  Polansky  and  Bassein  introduce  the  concept  of

non-ternary (n-ary) contour values, exemplified by the quintary categories: “a lot less than, less than, equal to, greater than,

and a lot greater than” (1992, 277–78). (8) Similar meta-intervals (with both direction and magnitude) have been proposed for

tone languages and used by the refined contour search parameter of Huron’s ThemeFinder algorithm (Huron and Sapp 1999).

Though the magnitude component of refined (or n-ary) contour is generic, a case can be made for avoiding magnitude

altogether in pitch height comparisons. Frequency ratio and tonal context strongly influence the perception of magnitude,

but not direction. Demany, Semal, and Pressnitzer (2011) provide experimental evidence that judgment of direction (as in

ternary contour) is nearly autonomic while judgment of magnitude is a higher-order cognitive process. In general, beyond

pitch height comparisons, unidimensional judgment of magnitude is difficult (Donkin, Heathcote, and Brown 2015).  In

Marvin and Laprade (1987), contour intervals arise from multiple degrees of adjacency, not incorporating generic magnitude.

Ian Quinn (1997) takes n-ary contour in the opposite (smaller) direction, with binary C+ ascent, but ternary categories can

still be deduced by making pairwise comparisons in both directions (see Section 4). Because the judgment of magnitude is

highly contextual, variable across cultures and between people, my position is that magnitude should be left out of pairwise

contour comparisons. Choosing which notes to compare (the degrees of adjacency) is a harder decision.

[2.2] My interest lies in identifying melodic patterns intentionally developed by musicians and/or salient to attentive listeners.

Where the boundary lies between what is aurally apparent (e.g. a melodic sequence) and what is beneath the surface (e.g. an

Urlinie) is not known, but there is some evidence. Perceptual studies from the 1970s and 1980s (9) suggest that contour is the

most prominent and memorable aspect of novel or transposed melodies outside of or prior to the establishment of a tonal

paradigm. Performance of  perceptual  judgment  tasks  decreases as the length of  melody increases from three to seven

pitches, and rapidly erodes beyond lengths of nine pitches (Edworthy 1985, 383). Fewer empirical studies have addressed the

perception of non-adjacent pairwise comparisons. A study by Quinn suggests that melodies with adjacent and non-adjacent

equivalence are more likely to be categorized as similar by listeners than melodies that only share a contour adjacency series

(1999, 454). (10) Edworthy’s participants struggled to retain contours of cardinality nine, so it seems reasonable to argue that

eight degrees of adjacency greater, as found in a COM-matrix for a nine-pitch segment, are beyond the cognitive grasp of

most listeners.

[2.3] The maximum number of degrees of adjacency for a pitch series of cardinality  is . For COM-matrices to be

applied in analysis,  phrase boundaries are needed to break up entire pitch series into segments.  Using  degrees  of

adjacency for an entire piece is unwieldy, even if it is concise. Furthermore, the COM-matrix sets a high bar for formal

equivalence that fails to recognize highly similar contours, such as the subject and tonal answer of Bach’s C-minor Fugue

(BWV 847), as the same. (11) The alternative presented here is to commence contour analysis without any prior segmentation

based on independent criteria, and lower the bar for formal equivalence by restricting degrees of adjacency to a constant

window size. In analyzing a piece with a melody of 100 consecutive pitches, potentially 99 degrees of adjacency can be used.

The fact that the melody starts on a higher note than it ends on may be an important and curated detail of a musical work

that many listeners catch.  However,  what  about the 3rd note and the  96th note (a comparison at  the  93rd degree  of

adjacency)? To apply contour analysis to unsegmented music, some limits on degrees of adjacency must be imposed, even if

at first they are somewhat arbitrary.

[2.4] Quinn (1999, 454) found that participants were more likely to judge contours as the same if they had equivalence

beyond note-to-note comparisons. However, the effect on similarity judgments was less impressive than one might expect,

and it is not known to what degree of adjacency listeners attend. Our sensitivity is likely less than  (the maximum for

any cardinality n) in most contexts. Without prior knowledge, a listener does not know what length of segment to listen for,

unless it is clearly punctuated in time. A COM-matrix for a 12-pitch segment holds 66 contour comparisons:

n n − 1

n − 1

n − 1

3 of 17



The extreme level of adjacency ( ) may hold special prominence if heard in isolation from the rest of the piece, but it is

doubtful that all degrees of adjacency hold the same sway over perception. Polansky (1996, 337) suggests a weighting for

each degree of adjacency. Quinn’s study results are consistent with this (1999, 453), but he did not operationalize a test for

the weighting of degrees.

[2.5] The decrease in performance beyond a cardinality of nine found by Edworthy (1985, 383) bears some resemblance to

Miller’s rule for mental processing of information: working memory can hold “seven plus or minus two” objects (1956). The

heuristic can only be applied loosely here because the same listener may remember pitch information differently depending

on context. For a listener without absolute pitch perception and acculturated to a tonal system, once a tonal context is in

effect, echoic memory is likely using the same referent (tonic) for all pitches in a series. In the absence of a tonal paradigm,

or before it has been established, this cannot be the case. Whether holding nine notes in terms of a tonal referent or eight

directions between nine pitches in a contour adjacency series, a cardinality of nine notes is close to Miller’s upper extent of

nine objects if each note corresponds to around one memory bin. The extent to which further degrees of adjacency make a

contour model more or less like echoic memory of melody can only be conjectured here. Using ternary contour categories

, a segment of cardinality nine has 15 pairwise comparisons within two degrees of adjacency ( ) and 21 for

three degrees of adjacency ( ). (12) If each cell of a COM-matrix is an object, then Miller’s upper limit of

nine memory bins is reached rather quickly (see Figure 2a).  The number of unique comparisons for  degrees  of

adjacency reaches 10 at  a cardinality of  .  However,  it  is not the pairwise comparisons that correspond to Miller’s

memory  bins.  The  contour  comparisons  (though  ternary  in  the  COM-matrix)  are  closer  to  bit  values  that  encode  a

description of the object—in this case, the pitch. (13) Miller uses information theory to address auditory perception (pitch and

loudness), in addition to other modes of perception including vision. For pitch, Miller interprets results from Pollack’s study

of pitch memory (1952), wherein participants were asked to remember a collection of numbered pitches and then respond to

pitch stimuli with the corresponding number. Participants tended to make identification errors when primed with collections

of six or more pitches. Based on this, Pollack made a calculation of human “channel capacity” for pitch objects: a bit depth

of 2.3 (1952, 748). (14) While both Pollack and Miller define it as an absolute judgment task, (15) it is more likely a judgment of

relative pitch for most listeners. Participants were primed for the task in Pollack’s study by hearing a pitch collection in series

from low to high, so the ordinal number of the pitch was also its relative height within the series.

[2.6]  Let  us consider the  cognitive process of Pollack’s  participants,  however  speculative.  First,  the primer needs to be

memorized; at first, let us presume that this is done in chronological (and ascending) order. Figure 2b leaves the channel

coding open, but reflects the upper limit of six pitches. (16) Many listeners would contextualize the series based on the pitch

relationships therein and not recognizing absolute frequency. Out of a tonal context,  recognizing super-particular ratios

would be useful for trained musicians, but not for others, and such ratios were not present in the series (an equal logarithmic

spacing of pitches ranging from 100 to 8000 Hz). In a tonal context, scale degrees or solmization would be quite effective,

but that is not possible with this task either. A series of six pitches evenly distributed across this range is quite spread out.

Each pitch would produce a distinct sensation because of the wide spacing and dispersion of corresponding sensitivity on

the basilar membrane. Two pitches spread across this range are easily categorized as high and low, a distinction that perhaps

can be based purely on sensation. For four pitches, we could add categories of mid-high and mid-low (categories of tone

level often used in Autosegmental Phonology).

[2.7] At some cardinality, added memory bins are no longer discrete and the objects within them tend to be confused. Pollack

found this effect at six pitches. However, Pollack found that inaccuracy did not tend to occur in judgments of the highest

pitch stimuli, as shown in Figure 2b. Once the cardinality exceeded five, middle pitches were associated with greater error

than the extremes (low and high) of the series. (17) Presumably, the bit depth of 2.3 represents a conversion of the decimal

integer six to a binary integer 110 (eight integers requires a bit depth of three, four integers a bit depth of two). This would

imply a loss of information at six and above. However, the loss is not at the extremes; it is in the middle. Hence, the first bit

should differentiate the lowest pitch and the highest pitch, and added bits can specify relative pitch heights in between.

Figure 2c revises Figure 2b to reflect an encoding of the pitches in the series based on relative pitch height and a merging of

the middle bins into a single bin. In the bit encoding, the first logical represents low (0) or high (1); a second logical is added

if the pitch is below (0) or above (1), the extreme represented by the first value. We could continue adding logicals as we

move further and further towards the middle, but already by the third logical we have surpassed Pollack’s proposed bit depth

of 2.3. In the study, response time was unrestricted, so a possible cognitive process is to compare the stimulus with echoic

memory of the primer. As a participant, I would compare the stimulus to the primed low-to-high pitch series to find a match,

− nn

2

2
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n−1 + n−2 + n−3

n − 1

n = 5

4 of 17



then reconfirm the placement of that pitch in the series by comparing it to the others, e.g. “this sounds like the note that was

immediately higher than the lowest note, which places it second in a series from low-to-high.” Matching the stimulus to a

pitch from the primer may be an absolute frequency identification using associative memory, but assigning the stimulus a

number from the series is a relative frequency comparison using syntagmatic features, and most likely does not involve

magnitude (interval size) so much as direction (contour). (18)

[2.8] Alternatives to Miller’s magic number have been proposed, usually smaller ones. What is bewildering is how a variety of

objects, whether pitch or color, correspond to the memory bins indexed by the bits. Points on a line, color,  pitch, and

loudness are all categorized as objects on a unidimensional continuum in Miller’s paper, but they are not uniform in terms of

neural pathways or processes. This may explain some of the variation in channel capacity between the modes presented in

Miller’s article. For instance, a bit depth of 3.2 is calculated for points on a line (which is right around nine objects). If

channel coding has relevance to pitch perception, binary comparisons of pitch height (1 for higher, 0 for equal or lower), as

suggested by Quinn (1997), are a possibility for encoding pitch syntagmatically. Quinn’s and my own reasoning for adopting

binary C+ ascent  over the ternary  model are further addressed in Section 4. For channel coding of fully

combinatorial contour, as in a C+ matrix, each degree of adjacency requires a bit (see Figure 2d). A C+ matrix for three

notes requires two bits, four notes require three bits, five notes four bits, and so on. Using C+ ascent with  degrees of

adjacency is not as economical in terms of bits as the encoding shown in Figure 2c, but it is more robust (the encoding in

Figure 2c is intended for a distinctly non-musical pitch series from low to high). If Pollack’s and Miller’s application of

information theory has any bearing on short-term memory of contour, and if—as Quinn’s study results suggest—Polansky’s

notion of “memory decay” is valid, full combinatorial contour may yield too much detail. In continuous (un-segmented)

music,  local  degrees of  adjacency beyond three may not be salient,  and therefore may not be relevant  to an analytical

technique based on normative perception, as contour analysis is. (19)

3. Manual Segmentation

[3.1] Morris (1993) presents an analysis of the melodic foreground of a Schoenberg piano miniature (op. 19, no. 4). He

introduces an algorithm that reduces phrase segments to the relationship between time and pitch extremes (the first, the last,

the highest, and the lowest). Unlike the COM-matrix, the contour reduction algorithm is not sensitive to cardinality. Like the

COM-matrix, it  cannot be applied meaningfully until the piece is segmented. If anything, segmentation is more crucial;

without it, an entire piece is reduced to a prime of (at most) four elements. Morris’s extraction of the melodic voice from the

full texture of op. 19, no. 4 (which has block chords interspersed) is uncomplicated, but the segmentation into phrases

deserves more exploration. The careful elaboration of the contour reduction algorithm starkly contrasts this single sentence

used to describe the entire process of segmenting the piece into phrases: “Phrase boundaries conform to traditional criteria:

slurs and other forms of articulation, punctuating gaps, shape, and referential affinity” (Morris 1993, 209). Two of Morris’s

criteria  for  segmentation  sound  a  lot  like  contour:  “shape,  and  referential  affinity.”  His  description  indicates  that  he

segmented the work by visually examining a score. So, contour was used liberally as a visual gestalt in segmenting the work,

and then very methodically to reduce each segmented phrase.

[3.2] In examining Figure 3a at first glance, without detailed attention to pitch, we can see that phrase 1 and phrase 4 have

similar contours, in a different range and with different durations. The variation in interval magnitude means it is not an

exact  transposition.  Phrase  4  has  two  sets  of  recurring  pitches  (F4–F4  and  B 3–B 3)  within  the  segment,  so  the

COM-matrices for the two are similar but not equivalent. Based on phrases 1 and 4, and ignoring the others, we could make

a generalization that wherever there are recurrences of a similar contour segment of cardinality ( ) there is a phrase of

cardinality ( ).

However, this assertion breaks down when it is extended to the rest of the piece, because Morris’s phrase 2 includes two

iterations of a similar contour with CSIM of 0.80 (12 out 15 comparisons are the same; see Figure 3b). An expert human

analyst  does  not  always  see  a  one-to-one correspondence  between  the  boundaries  of  recurring contour  segments  and

phrases. We can revise our heuristic as follows: where there is one or more recurring contour segments of cardinality  there

may be one or more phrases of cardinality , where  is a positive integer up to the number of contour segments found in

a cluster.

[1, 0] [+, 0, −]
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n
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The generalization that a phrase may be formed out of an isolated recurring contour or a cluster of recurring contours

describes half the phrases identified by Morris. The relief left between the segments that form phrase 2 and phrase 4 forms

Morris’s phrase 3, leaving just one boundary between phrases 5 and 6 (addressed in Section 8). Contour patterns can be used

to both segment a pitch series and compare melodic segments to each other.

4. Making a CONTCOM

[4.1] Ian Quinn introduced the C+ Matrix in 1997 to allow an averaging of cells into fuzzy values. Quinn writes:

To find the  essence of  contour is  tricky because  there are  so many ways of  notating contour.  Pictures,

contour-pitches, and COM (comparison) matrices come immediately to mind as candidates. None of these

modes of representation,  however,  captures the essence of  contour as simply and elegantly as does one

simple relation: ascent. (Quinn 1997, 248)

Here, binary C+ ascent is also adopted for simplicity and elegance, but not primarily for the purpose of averaging crisp

matrices  into  fuzzy  matrices.  Binary  categories  of  1  (ascending)  or  0  (non-ascending)  make  techniques  developed for

symbolic music (MIDI data) extensible to recorded music for which categorizing note-level (or syllable- or phoneme-level)

pitch segments as the same is more challenging. (20) Figures 4a–c present a new type of contour matrix intended to model

contour for an entire unsegmented pitch series. A conventional COM-matrix has  distinct degrees of adjacency (the

main diagonal in the matrix compares the event with itself). The last degree of adjacency ( ) within a COM matrix only

compares the last note to the first  note (and vice versa).  This contrasts the note-to-note model (e.g. Friedmann’s CAS)

explored in perceptual studies (by Dowling, Edworthy, and others). Music theorists other than Friedmann have emphasized

further degrees of adjacency beyond immediate neighbors, but as explained in Section 2, using all degrees of adjacency may

be excessive.

[4.2] To be created, a continuous C+ matrix (CONTCOM) requires a limit on degrees of adjacency, avoiding an all-or-

nothing approach to complex adjacency. (21) Beyond our perceptual framework, there are practical considerations for setting

the degrees of adjacency that will be used in the CONTCOM. First, consider the minimum cardinality of segments. The total

number of degrees should not exceed the minimum cardinality of interest. Then, consider the standard of equivalence for the

analysis. The level of detail in a CONTCOM increases with the number of degrees of adjacency included. The lower the

degrees, the lower the standard for equivalence. In the CONTCOM in Figure 4c, two degrees of pre- and post-adjacency are

used for each pitch in the series, an adjacency radius of two around the focused event (the note compared to others at each

index).  The window size  is  indicated by adding  a  subscript  to the  CONTCOM label  (e.g.  CONTCOM ).  If  it  is  not

symmetrical about the focus, orientation can also be indicated. For pitch streams of indefinite length, and to model real-time

perception of  pitch,  a CONTCOM  would be appropriate,  in  which two degrees are extended backwards in time, as

indicated by the negative. Hearing into the future is not so concrete as comparing a note to the notes before it; however,

CONTCOM  might be useful to model expectation.

[4.3] CONTCOM is not without precedent.  As noted in the introduction, Polansky (1996) uses windowing to calculate

metrics in a continuous (unsegmented) signal, but there are some key differences. Polansky’s metrics (including Ordered and

Unordered Combinatorial Distance) describe contour within a window, whereas the columns of CONTCOM describe a

single  note  (or  pitch  segment)  in  relationship  to  other  notes  within  a  window.  Any  segment  of  CONTCOM will  be

composed of data from multiple windows, with windowed data for each element of the contour segment. This is a nuanced

idea theoretically, but also important formally and computationally. The strongest formal connection between CONTCOM

and prior contour theory is between the diagonals of a full combinatorial matrix and CONTCOM’s rows (see Figure 4c). The

rows of a CONTCOM are generally a lot longer than matrix diagonals, because they may span an entire piece. Marvin and

Laprade (1987) call the diagonals above the central diagonal of a COM-matrix INT , INT , and so on to INT . INTs

correspond to the rows of CONTCOM. Because binary C+ ascent is used, it is preferable to include degrees of adjacency on

both sides  of  the  focus,  which could  be  termed INT ,  INT  and so  on.  Quinn  (1997,  1999)  emphasizes  that  C+

comparisons do not differentiate between the “0” and “−” categories of ternary comparisons, so it is necessary to use the

entire C+ matrix (excluding the central diagonal) to calculate similarity (C+SIM). (22) Likewise, it is necessary to include pre-

and post-adjacent comparisons to know if there is a locally repeated pitch in a CONTCOM.

5. Contour Slices, Contour Levels and Reduction

[5.1] Each column of the CONTCOM in Figure 4c is  a contour slice:  a collection of pairwise comparisons between a

n − 1

n − 1

4

–2
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1 2 n−1
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focused note and referents within a window. A radius of two degrees of adjacency around the focus forms a window of four

degrees, a three-degree radius forms a window of six degrees, and so on. It is also possible to use an asymmetrical number of

pre- and post-adjacent degrees. CONTCOM easily adapts to any such configuration, symmetrical or asymmetrical. Slices

within each other’s window range are to some extent dependent. The +1 degree cell of a slice is the inverse comparison of

the −1 degree cell of the next. Even with the partial redundancy, (23) there are six independent comparisons in two adjacent

slices of a CONTCOM . While non-adjacent degrees are useful, piling on degrees quickly becomes overly descriptive. In this

demonstration of CONTCOM, an adjacency radius of two degrees (a symmetrically-oriented window of four degrees) is

used to grant flexibility to pattern-match contours that do not share the same COM-matrix. With this extent of adjacency,

automated analysis is fairly efficient and performs robustly.

[5.2] CSEGs map pitches to contour pitches positioned low  to high  in contour space (see Marvin and Laprade

1987). With a moving window of adjacency, height in contour space is fundamentally different. Each pitch is not assigned a

unique contour pitch, but a contour level that is shared by notes with different absolute pitch. Contour levels (CLs) are the

sums of the contour slices. The number of levels (including 0) is the number of degrees in the window plus one. For a

four-degree  window,  there  are  five  levels  .  Contour  slices  and  contour  levels  are  like  the  columns  of  a

COM-matrix and contour pitches, but windowed. The windowing bears some resemblance to the Ordered and Unordered

Combinatorial  Distance  (OCD and UCD) metrics  of  Polansky  (1996).  One  use  of  CONTCOM that  deserves  further

elaboration in other writings is to search or similar contour slices. There is equivalence in which every element in the slice is

the same as another slice (Table 5a and Figure 5a) and similarity through the sum of ascents (the contour level, Table 5b

and Figure 5b). In Schoenberg’s op. 19, no. 4, local minima  have the highest frequency, followed by local maxima

. A species of super-minima  occurs only once, and four slices (including two types of super-minima,

 and ) do not appear at all. Slices can also be grouped by their sums (contour level), forming five genera

when four degrees are used: minima (one species), super-minima (four species), mediants (six species), sub-maxima (four

species), and maxima (one species). Events grouped by contour level give a different perspective on Schoenberg’s melody:

there are more sub-maxima (11) and mediants (10) than maxima (7, see Table 5b). In Figure 5b, sub-maxima are boxed on

the score and in bold in the CONTCOM. Slices 27 and 28 are at the same level, but sub-maximal to different maxima (these

are  the  adjacent  slices in  bold outline,  C4 and D4 on the  score).  Slice  27 (C4)  is  sub-maximal  to 28 (D4),  but  28 is

sub-maximal to 30 (F4), which is not a sub-maximum at all. With a larger window of pairwise comparisons for each note,

neither would be a sub-maxima. The unique properties of slices and levels are a bit confounding, but also make them a useful

abstraction.

6. Searching CONTCOM and the Cardinality Saturation Point

[6.1] There are other useful interpretations of pitch data using CONTCOM, but my primary motivation here is finding

optimal segmentations.  First,  I  implemented a simple algorithm in MATLAB to search for the most common melodic

segments of a single cardinality. The algorithm approaches the search with no information about the piece except an ordinal

pitch series. Figures 6a-f are unique applications of the search algorithm to six different cardinalities starting with two and

augmenting the segment size until there are diminishing returns, which for this piece is cardinality seven. Greater sizes could

easily be searched for as well, but beyond a certain cardinality, there is no recursion at all.

[6.2] The algorithm excludes cells that compare the focus to referents outside of the segment, so the dyad does not take

advantage of the non-adjacent degrees included in CONTCOM  (see Figure 6a). All dyads in the Schoenberg miniature are

either ascents or descents; there are no horizontal dyads. In Figure 6b, the most common melodic triad is shown as the

search algorithm sees it. In contrast to the contour slice, this jagged excerpt of the CONTCOM  gives complete contour

information (as in a C+ matrix) about the relationships between three adjacent elements, but nothing about their relationship

to outside pitches.  Dyads and triads were identified as basic building blocks of  melodic contour by Seeger (1960)  and

Kolinski (1965). The sub-segmental nature of these lower cardinalities is reflected in the decomposition of CSEGs into

CSUBSEGs by Marvin and Laprade (1987). Figure 6a and 6b demonstrate the over-segmentation that occurs when the

algorithm searches for cardinalities two and three.

[6.3] As the cardinality increases, the amount of recursion of a single segment decreases (see Table 6a). For cardinality four,

the most common contour segment has six instances, as compared with 10 for triads. At four, contours more characteristic

of the piece begin to appear. At cardinality six, a meaningful analysis emerges. The high-frequency hexad has the same
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starting points as the high-frequency pentad, but neatly closes the gap between the first and second occurrences, filling out

Morris’s phrase 2. A constraint on the search algorithm could be added to exclude contour segments that span rests. As

Tenney and Polansky note, temporal separation has a segregative effect on a monophonic succession of elements (1980,

208). If such a constraint were added, all the identified hexads would fall within Morris’ phrase boundaries (Figure 3a).

Cardinality six provides the optimal segmentation using a single pattern. Extending the search algorithm to cardinality seven

reduces the number of items returned by the most common segment, so there is less coverage ( ), and two of

Morris’s phrase boundaries are crossed.

[6.4] A trend emerges from increasing the cardinality of the search algorithm. In this piece and all others I have studied, a

point is  reached beyond which every segment is  unique and there is  no recursion: the cardinality  saturation point.  In  the

Schoenberg miniature,  the cardinality saturation point is nine. At this  and greater segment lengths, the total number of

segments equals the number of unique segments, and both decrease until the cardinality of the entire series is reached (see

Table 6a). Beyond the saturation point, there is no recursion. In the lower cardinalities the number of unique segments is at

or near the possible number of permutations. For a piece with considerable contour recursion, such as this Schoenberg

miniature, the number of unique segments does not keep pace with the number of possible permutations as cardinality

increases.

7. Segmentation Algorithm

[7.1] Based in part on Morris’s phrase boundaries, a ground truth for automatic segmentation appears in Figure 7a.  This

serves as an empirical standard that, if successful, the algorithm will replicate without any information specific to the piece

except for the pitch values, onsets and offsets. Over 83% of the pitch series (39 out of 47 events) can be accounted for with

two model segments. The circle motive is a heptad and the boxed motive is in most cases a hexad. The third appearance of

the boxed motive is extended into a heptad by a redundant contour slice (see [7.2]); the fourth appearance is a similar

contour in retrograde. Because the ground truth uses multiple cardinalities, the segmentation algorithm must search and pick

segments of multiple cardinalities to succeed. The constraints and methods in Table 7a  are also added to improve the

algorithm. As input parameters, they can be turned “on” or “off ” or adjusted to be appropriate to the musical object being

analyzed. The parameters are restricted to pitch information, with the exception of number 8, SEEGAP. Of the parameters,

1–3 effect creating and pre-processing the CONTCOM, 4 is a constraint on cardinality, 5 augments the search algorithm by

implementing a secondary search for transformations of recursive segments within the segment pool (SEGPOOL), and 6–9

filter or evaluate candidates in the SEGPOOL.

[7.2] Of these parameters, one in particular deserves elaboration: REDRCS, the reduction of redundant contour slices. It is a

novel solution to the cardinality sensitivity problem made possible through the formalization of contour slices (a similar

reduction  can be  applied  to contour  levels).  Through the  reduction,  melodic  segments  of  different  lengths  may form

equivalent contour segments. Unlike other methods, reduction is applied to the entire series before segments are identified.

There  are  no  cardinal  primes  because  in  contour-level  space  all  maxima  and  minima  are  equal  (level  n  and  level  0

respectively). Slices for two or more consecutive unaccented notes are reduced to one, specifically passing or repeated tones

and not notes at a change of direction, which Thomassen calls pivots (1982). Redundant contour slices (RCSs) are defined

here as consecutive columns in CONTCOM that hold the same adjacent relationships (  degree) as the previous column.

In its application to ascending or descending motions, the reduction mirrors the fusing of middle memory bins in Figure 2c.

For example, an ascending chromatic scale from C4 (MIDI pitch 60) to C5 (MIDI pitch 72) is reduced to the first slice, the

last slice, and one intermediate slice (see Figure 7b). Likewise, an ascending C-major arpeggio is reduced to three slices (see

Figure  7c).  The  reduction  is  the  same  in  terms  of  adjacent  degrees  (as  pictured).  However,  cells  for  non-adjacent

comparisons will need to be recalculated based on a new mean pitch. There is no information for the relationship of the first

pitch to a prior pitch or the final pitch to later pitches, making them distinct from the intermediate notes in that they are

under-contextualized. As Pollack (1952) found, the first pitch and the last pitch of a finite pitch series have special prominence.

In addition to initials and finals, local minima and maxima are never eliminated through this process, and although it has

similarities to Morris’s algorithm, it is considerably less drastic than reduction to a prime. All pivots and at least one medial

event between pivots (if there is one) are kept. REDRCS may reduce some slices for repeated pitches, but it does not remove

them all. Figure 7d shows the reduction for a segment of the same length as the chromatic scale in Figure 7b, but with many

repeated pitches in the center instead of stepwise ascent. This produces a longer reduced contour because the first event at

66 (F 4) produces a different slice than all the others. Deleting repeated pitches (DELREP) and reducing redundant contour

slices (REDRCS) are distinct operations on the contour series.  Contour slices adjacent to time gaps are not reduced if

SEEGAP is  turned  on.  They  are  more  likely  to  be  structural  than  embellishing.  The  function  REDRCS embodies  a

7×3 < 6×4
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perspective on pitch salience (or accent) and underlying contour. The chromatic scale and ascending arpeggio are equivalent

when reduced, but the segment with many repeated pitches in the middle is not. Only two redundant slices are found in the

CONTCOM for the Schoenberg piece because it is highly angular (see Figure 7e).

[7.3] After preparing the CONTCOM (with or without reduction), the search module returns indices in a segment pool

(SEGPOOL) for occurrences of each unique segment of CONTCOM within the constraints of the input parameters. For

each cardinality, the most common segment is presented to the segment evaluation module (EVALSEG) as a candidate to be

the  primary  segment.  Multiple  ranked evaluation  criteria  are  used  to  select  from the  full  range  of  cardinalities  in  the

SEGPOOL (see Table 7c). An input parameter, COVRPNTS, determines the first criterion for evaluating candidates in the

SEGPOOL. Points is intended for tightly-constructed music with close recursion (such as this composition by Schoenberg),

and coverage is intended for music with frequent paradigmatic cadences, and all else. Selecting the primary segment (the first

parent segment) is the most crucial step. After this point, only segments that fit into the relief left by the primary segment are

used.

[7.4] The workflow in Figure 7f produces a single analysis. This process may be run repeatedly, varying a single parameter at

a time within a range, before a final evaluation of multiple analyses. In the SEGCOMP phase, if the indices of a superior

parent  segment's  child segments  (similar  and transformed iterations)  correspond with the indices of  an inferior  parent

segment, the resulting analysis for one set of parameters may be reduced before it enters the final evaluation. A key metric

for ranking analyses is the number of recursive segments used (optimum is 1). So, any reduction improves the performance

of an analysis in the final evaluation. Reduction occurs when the indices of the child segments of a superior parent segment

are contained by (or contain) the indices of an inferior parent segment. The inferior parent along with its children (if any)

join the family of the superior segment. Even if adopted segments are not the same cardinality as the parent segment, they

are still  accepted. Like the reduction of redundant slices, but through a different means (that can be compounded with

REDRCS), this allows for the possibility of recognizing contours of different cardinalities as related.

8. Discussion of Analyses and Comparison to Ground Truth

[8.1] All of the candidate analyses are ranked in a final evaluation metric, using one or more of the following criteria:

EVAL1: Number of contour segment families;

EVAL2: Number of pitches left out of the segmentation;

EVAL3: Total number of segments divided by the number of leftover pitches.

For all criteria, lower values are preferred. The last criterion gives preference to larger cardinalities. Any single criterion can

be used, or it can be multiplied, creating an evaluation product that is ranked higher if it is of a lower value. Table 8a is a

ranked list of analyses with EVAL products less than 5. Analyses corresponding to the three boxed portions of the table are

visualized in Figures 8a (Analysis 1), 8b (Analysis 2), and 8c (Analysis 3). The same analysis may be returned by similar

input parameters.  Analysis  1 is  closest to Morris’s  segmentation. Analysis  2 allows segments to cross time gaps (rests).

Analysis 3 is included to illustrate over-segmentation resulting from a minimum cardinality of less than 4. For each analysis:

(1) the input parameters and output evaluation criteria values are listed; (2) the CONTCOM  is shown for the entire piece

(Analyses 1 and 2 also show the score); (3) a table of the segment indices is provided; (4) the model for each segment is

shown and labeled according to its rank; and (5) if there is more than one segment in a family, a weighted fuzzy summary is

calculated based on the model segments and number of iterations for each model. All C+SIM values are restricted to the

windowed degrees of adjacency. If the child segment(s) is larger than the parent, these additional cells are shaded gray. The

fuzzy values follow Quinn (1997), with the number of iterations for each segment in the family used as a weighting in the

calculation. A fuzzy matrix is just one way to summarize similarity between related segments produced by the algorithm,

whether iterations of the same model or within the same family. Once one has segments, there are many, many ways to

calculate degrees of  similarity between  them. Options  for  working  with different  cardinalities  include Morris’s  contour

reduction algorithm (1993), Huron’s simil command in the Humdrum Toolkit (1994) and gross shapes (1996),  Polansky’s

Combinatorial  or  Linear  Direction metrics (1996),  phase spectra from Fourier analysis  (Schmuckler  2010),  and  various

statistical methods.

[8.2] Analyses 1 and 2 are the highest-ranking analyses by evaluation product. Rows 1–3 of Table 8a correspond to Analysis 1

(Figure 8a) and rows 4–6 to Analysis 2 (Figure 8b). Keeping the window size constant and varying the minimum cardinality

(MINCARD) from four to six produced the same analysis. The difference between Analyses 1 and 2 in terms of input

parameters is the setting for SEEGAP: Analysis 1 has it “on” and Analysis 2 has it “off.” “Punctuations” were part of
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Morris’s manual segmentation. Excluding segments that cross gaps from the SEGPOOL produces an analysis identical to

the ground truth. Analysis 3 is the highest-ranking among the analyses produced with the minimum cardinality set below

four. Setting a minimum cardinality of four returns segments that are characteristic of the piece, at cardinalities of six and

seven, instead of over-segmenting the piece with triads that are the basic building blocks of all melodic contour (see Seeger

1960, Kolinski 1965). Using a minimum cardinality (MINCARD) of four may be a good general practice for segmentation

based on contour recursion.

[8.3] Analysis 1 (Figure 8a) demonstrates that Morris’ segmentation can largely be recreated with an automated process of

searching for and evaluating contour recursion. There are two exceptions: (1) leftover pitches not included in the recursive

segment collection, and (2) the combination of recursive segments into a single segment, as in Morris’s phrase 2. Exception 1

can be overcome without durational information, but exception 2 cannot. In a post-segmentation module, leftover pitches

could be joined to a recursive segment by adding a conditional statement: if there are leftover pitches in clusters of less than

the minimum cardinality, they should be joined with the closest segment not separated by an offset-to-onset gap (rest). Any

larger cluster should form a non-recursive segment of its own. This produces Morris’s phrase 3 and phrase 5. Regarding

exception 2, Morris’s identification of phrase 2 seems to be based on uniformity in duration (a string of sixteenth notes),

perhaps a form of “referential  affinity.”  Because  the segmentation algorithm works with only pitch and not  durational

information, it does not see the larger rhythmic grouping observed by Morris. The fusion of these segments into one phrase

cannot be accomplished without considering duration.

9. Recursive Segment Models (CLSEGs)

[9.1] CONTCOM is very robust for computation, but less than ideal for visualization. In classic contour theory (e.g. Morris

1987, Marvin and Laprade 1987), the CSEG class is useful for nominalizing a contour matrix into a visually and verbally

digestible format, e.g.  : “zero-two-one.” In this modified contour space, contour pitches have been replaced with

contour levels. By extension, the analog to CSEGs are CLSEGs. For the Schoenberg piece, the highest-ranked analysis used

CONTCOM , so any CLSEG produced from it will be a CLSEG , following the subscript convention for the CONTCOM

indicating the window size used. In this modified contour space, every pitch is no longer distinct. A recurring pitch will have

a different contour level, not some of the time, but almost always. Contour slices of all the same binary value (0s or 1s) mean

the event in focus is an extreme within the window around it, but the next local minima or maxima is not likely to be at the

same absolute pitch height. A conceptually challenging zero-value is produced by the first example in Figure 9a. An event

that is equal to everything within its window is a local minimum. The contour level of 0 for the fifth note, though somewhat

counter-intuitive, reflects a true statement: it is at the lowest pitch within a four-degree window around it. In contour-level

space, repeated pitches lose and gain height as they move away or towards pitch variance. The loss or gain of windowed pitch

height by repeated pitches is not necessarily a fault of CONTCOM. To the extent that this phenomenon is a detriment or

benefit to the analysis of contour in music with repeated pitches (of which the Schoenberg piece is not an instance) will be

explored in further research; however, it can be avoided fairly easily by collapsing all consecutive repeated pitches to a single

event, as on the right side of Figure 9a. There is precedent for the elimination of repeated pitches in contour analysis by

ethnomusicologists and music theorists (Polansky 1996, 261). However, this produces an anomaly that is an issue for music

without consecutive pitch repetition, such as this Schoenberg piece. In the right-side example of Figure 9a, pitches a step

apart (D4 and E4) map to levels 1 and 4. The wide gap has nothing to do with reducing repeated pitches and everything to

do  with  time-extreme  events,  which  are  under-contextualized  in  comparison  with  the  interior  contour  slices  of  a

CONTCOM. A pitch at the beginning or ending of a musical work is phenomenologically different than a pitch in the

interior of the work. CONTCOM neither assumes a genesis of pitch or absolute finality. The initial and final pitches may

have more context,  but that context is  unknown to the CONTCOM. This does not pose any problem for  the search

algorithm, but it is a problem for the summation of slices into levels when some slices are incomplete. The maximum level of

incomplete slices is less than the complete slices.

[9.2] There are three ways to handle this problem when making a CLSEG. The first is to include cells for comparisons

outside of the segment, if it is not at the beginning or ending of the piece. However, that will not describe all iterations of a

recursive segment. The second is to allow the orientation of a window to shift to include more degrees in one direction or

the other. This works for other pieces I have studied, such as the subject of Bach’s C-minor Fugue (BWV 847), but in this

case, it does not (see Figure 9b). The third option is to include a range of possible values for incomplete contour slices. For

the Schoenberg piece, the last option is ideal for modeling recursive segments. In Figure 9c, the parent segment of Analysis

1  yields  a  CLSEG  of   and  the  child  segment  yields  ,  with  the  dash

representing a range of  possible contour-level  values.  While the contour level  for  slices with complete  context  for  the
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adjacency radius can be calculated through a simple summing of the column, when there is incomplete context this is not the

case. An interesting case of this is in the parent segment. It appears that the second slice could be level 3 or level 4 with more

context, but if we consider the +1 comparison value (to the next event), it is above it and only level 4 is an option, which in

turn means the maximum possible contour level for an event immediately prior to the segment is 3. There can be multiple

local minima (or other levels), but there can be only one local maximum within a radius of each other (half the window size if

it is symmetrical). This creates a bit of a paradox, because a pitch prior to the segment could potentially be equal to or higher

than the second event, which would create the inverse of the repeated pitch anomaly: adjacent pitches of different height

with the same contour level. Once again, this is not seen as an invalidation of the model, but an interesting side effect of a

new abstraction of pitch space. What it reveals to me is that although the segment is extracted from the CONTCOM  with

outside context excluded, the outside context still has a phantom presence. The model for the parent segment excludes the

possibility of level 3 for event 2. Although the possibility exists within the matrix formation for consecutive events with

different pitches to have the same contour level, it does not happen in the actual analysis of the piece. It is only a possibility

in the model of the recursive segment and may be constrained from surfacing in the music. To some extent, each segment

model dictates surrounding events, or the environments in which it is realized. This extends to recursive behavior. The

parent segment is more generative and less restricted in its realizations than the child segment. This can be attributed to a

specific characteristic: the beginning CL range does not enclose the ending CL range, as it does in the child segment. If

iterations of the child segment were to be arranged consecutively (which they are not in this piece), selection from of a level

from the range of options for the ending of the first iteration would influence the level of the beginning of the second

iteration, or vice versa. For consecutive iterations of the parent segment, the realized initial or final contour level for one

iteration does not restrict adjacent realizations.

[9.3] Each realization of an underlying contour may have a unique relationship to the model CLSEG. The easier path to

consider is a mapping from the actual pitches to the model, in which information is reduced. In Figure 9d, a segment from

the score is mapped to conventional contour space (CSEG class ) and then on to contour level (CL) space. As a

further abstraction, the CLSEG can be calculated directly from the pitch series or the CSEG class. It matters not. The

mapping from the symbolic data to the CSEG class is lossless in terms of the information needed to create a CLSEG model.

The CSEG can be an intermediary step in the mapping, or bypassed. Defining the inverse mapping from the model to the

actual pitches is more complicated because it requires the gaining of information: specification from a very general model to

what we actually see in the music. The information gained is largely influenced by external musical constraints. For many

instruments there are physical constraints, or a composer or improviser may be working with a specific pitch set or scale.

There is infinite potential for realization of each CLSEG, as there are for CSEGs. This infinity is tangibly, but perhaps not

truly,  augmented by realizations  that  augment  the  cardinality.  Is  it  possible to narrow this  down to likely and unlikely

realizations? A heuristic for this may be Prince and Smolensky’s Optimality Theory (2004), (24) a phonological method inspired

in part by Lerdahl and Jackendoff ’s GTTM (1983), which in turn took cues from generative linguistics. In its nascent form,

optimality theory evaluates candidate words by ranking constraints that explain why one word surfaces in the lexicon instead

of other conceivable or improbable words. Generally, constraints that exclude improbable words are easier to come by. When

using OT, one does not know all of the inputs. They are hypothetical save for the one that will be the successful candidate.

More than the single output, the formulation and ranking of constraints is of interest here. Any CLSEG can generate as

many inputs to be evaluated by a constraint ranking as one can imagine. For there to be recursion, multiple realizations of the

CLSEG must succeed in the evaluation. Not to conflate music and language or words and melodic segments, but a ranking

of constraints on outputs may be very useful for mapping a segment in contour space to pitch space. Any constraints would

reflect important traits of style and idiom, such as whether it is diatonic or non-diatonic music, and what voice range or

instruments will perform the music. Exploring the inverse mapping from models to realizations is not a simple task, but may

be very fruitful.

10. Conclusion

[10.1]  Through the  application  to  a  single  piece  of  music,  it  is  possible  that  I  have  “over-fit”  the  method.  However,

Schoenberg’s compositional idiom is so methodical and influential that the method, as presented here, should be extensible

to much art music of the twentieth century at the very least. While other music may pose unique challenges to the method,

the intention behind including variable parameters is so that it can also be applied to a wide assortment of monophony and

monophonic extractions from other textures.  Schoenberg’s  music is  a good testing ground because it  is so consciously

crafted, but it is not unique in its recursive nature. The following challenges to broader application were accommodated in

the initial formulation:
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This analysis privileged candidate segments with close recursion, awarding “points” for iterations that are adjacent

without overlapping. For tonal music, an alternative criterion of “coverage” is provided for segment evaluation (see

Table 7c).

1. 

This analysis is of a pitch series of finite length. The ability to handle pitch streams of indefinite length is necessary for

online processing or modeling real-time listening. Both of these applications make an adjacency radius around the

focus (and comparisons to the past and future) less appropriate. A window of only pre-adjacent degrees can be used.

2. 

Analysis of monophonic recordings poses a unique challenge that cannot be addressed sufficiently here: segmentation

of an audio signal into an ordinal pitch series. Proprietary software exists that can accomplish this task, notably

Melodyne, but it is preferable to have more user control over the calculation of a pitch from a fundamental frequency

analysis, as well as some signal-sensitive parameters. In further research, manual pitch segmentation will be compared

with automated approaches, in hopes of creating a fully automated process from raw audio to pitch series to melodic

segments.

3. 

Additionally,  detailed  exploration  and discussion  of  the  contour  slice,  contour  level  and  the  recursive  segment  model

(CLSEG) is needed.

[10.2] The processing load for the current algorithm is  heavy. To approximate the ability of a trained music analyst  to

recognize what Morris terms “shape and referential affinity” is quite taxing for a computer. This load could be reduced

somewhat by knowing more about human perception of contour,  which could in turn reduce the number of different

analyses attempted with varying input parameters. What is lacking is a perceptual basis for how many degrees of adjacency

are salient. One way to get more information is to conduct more behavioral studies. One could look for trends in similarity

ratings for melodies that have the same contour at two but not three degrees of adjacency, three but not four degrees, four

but not five degrees, and so on. This is similar to methods used by Dowling (Dowling and Fujitani 1971) and Edworthy

(1982) to study simple-adjacency, and by Quinn for complex-adjacency (1999). Another method, similar to Edworthy (1985),

is  to  ask  listeners  to  make  non-adjacent  pairwise  comparisons  and look  for  a  drop-off  in  accuracy  or  response  time.

Experiments to reveal perceptual or cognitive limits of non-adjacent contour comparisons would provide greater explanatory

adequacy for using a specific window size. Experiments by Schmuckler (2010) compare contours of the same length of time

instead of cardinality. (25)  No doubt,  the duration of  notes and metric placement affects  salience. However,  I  prefer  to

consider them as parallel streams that are to some extent independent, like having a CSEG and a DSEG for the same

segment (Marvin 1991). This reflects the role of contour in Schoenberg’s op. 19, no. 4, as well as the tone-level systems of

Niger-Congo languages that inspired this revision of contour theory. (26)  Further behavioral  research would lead to only

modest improvement in the method presented in this article, because it is already clear from this and other analyses that a

fairly small window of two to six degrees is most effective. My speculation is that this is similar to the human capacity for

non-adjacency, which is without doubt variable.

[10.3] The extent to which non-adjacent comparisons are perceptually salient is not known, but simple-adjacency has been

thoroughly researched. A happy medium between simple-adjacency and exhaustive comparison reflects our knowledge of

pitch perception and is productive analytically. Through automation, this analytical approach has potential for application to

large corpora, and to the use of machine learning to improve efficiency. Constraining the range of input parameter values to

only the most productive would be much less costly in terms of processing than producing many analyses and ranking them.

However,  the  flexibility  of  the  window  size  and  other  parameters  make  this  method  extensible.  The  re-ranking  of

SEGPOOL evaluation criteria (see Table 7c) is only one way to adapt this method to other signals. Schoenberg’s op. 19, no. 4

was selected as an object of analysis because of its brevity and to make a connection to prior work, specifically Morris 1993.

This does not reflect limitations on its use or efficacy. Unlike the COM-matrix, intended for music such as Schoenberg’s,

CONTCOM and the segmentation algorithm are designed for and have been applied to diverse musical spaces, including

Bach’s Well-Tempered Clavier, trumpet solos by Dizzy Gillespie, Ìgbò choral music, and Yorùbá praise poetry. (27) This modified

toolbox for  contour  analysis  maintains  applicability  to past  analyses  and holds  promise  for  analyzing  a  wide  range of

monophonic sound and symbol.

Aaron Carter-Ényì

Ohio State University

School of Music

Columbus, OH 43210

carterenyi@gmail.com
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1. See Seeger 1960, Kolinski 1965, and Adams 1976.

Return to text

2. Some relevant sources from the music cognition and perception and the speech and hearing science literature include

Dowling  and  Fujitani  1971;  Dowling  1978;  Massaro,  Kallman,  and  Kelly  1980;  Edworthy  1982,  1985;  Quinn  1999;

Schmuckler 1999; Eerola et al. 2006; Bidelman et al. 2010, 2015; and Demany, Semal, and Pressnitzer 2011.

Return to text

3. See Morris 1987.

Return to text

4. See Friedmann 1985, Marvin and Laprade 1987, Polansky and Bassein 1992, Marvin 1991, Morris 1993, Polansky 1996,

Quinn 1997, Beard 2003, Schultz 2009, and Bor 2009.

Return to text

5. See Huron 1994, Lartillot 2004, and .

Return to text

6.  The  nine  three-point  gross  shapes  are:  ascending,  descending,  concave,  convex,  horizontal-ascending,  horizontal-

descending, ascending-horizontal, descending-horizontal, horizontal (Huron 1996, 9).

Return to text

7. For detailed discussion of both models see Quinn 1999.

Return to text

8. Polansky 1996 keeps direction and magnitude metrics distinct.

Return to text

9. Dowling and Fujitani 1971; Dowling 1978; Massaro, Kallman, and Kelly 1980; Edworthy 1982, 1985.

Return to text

10. A COM-matrix models complex adjacency because it involves both adjacent and non-adjacent comparisons.

Return to text

11. In an application of the segmentation algorithm to Bach’s C-minor Fugue (BWV 847), it was found that the subject and

its answers are only equivalent up to 10 degrees of adjacency (adjacency radius of 5). The cardinality is 20, but all possible

degrees of adjacency (19) are not relevant to determining that the subject and its answers have highly similar, even equivalent,

contours. Findings on contour recursion in tonal music (including imitative polyphony and jazz improvisation) are addressed

in my dissertation (Carter-Ényì 2016) and will be published in separate articles.

Return to text

12. This can be generalized as . . . n-degrees).

Return to text

13. Both Miller 1956 and Pollack 1952 use the term tone instead of pitch.

Return to text

14. A bit depth of 2 would yield four objects and 3 would yield nine objects. Bit depth is converted to unique values by

taking 2 to the power of the bit depth (e.g. , where  is the bit depth).

Return to text

15. In current psychology literature, this is referred to as absolute identification.

Return to text

16. Here channel coding refers to the categorization of perceived pitch in echoic memory, and bypasses the rather complex

question of how a physical signal is converted to a mental impulse. See de Cheveigne 2005 for models of pitch perception

from Helmholtz to more recent scholarship. Clearly, the bit depth of 2 to 3 calculated by Pollack (and reiterated by Miller) is

not intended to encapsulate the complexity of pitch perception, but simply the information necessary to differentiate like

Σ(n − 1… n−degrees)

2

x

x
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sounds that differ only in terms of pitch height.

Return to text

17. Another possible cause for error in the absolute identification task is the number of stimuli between the prime and

current stimulus. Recent studies (Matthews and Stewart 2009; Donkin, Heathcote, and Brown 2015) have explored sequential

effects.

Return to text

18. Though not in reference to Pollack’s study or a discussion of non-adjacent comparisons, Lartillot (2004, 58–60) provides

a similar account of listening strategies.

Return to text

19. Marvin and Laprade 1987 cites an extensive body of psychological research.

Return to text

20. This avoids declaring and substantiating a just-noticeable difference to form three categories for audio recordings.

Return to text

21. Another form of continuous matrix, GLOBCOM, is outlined in Carter-Ényì 2016.

Return to text

22. In Morris’s COM matrix, the upper left and lower right portions are inversions of each other; in the C+ matrix they are

not because the binary relationship is asymmetrical (1 means higher, 0 means equal or lower).

Return to text

23. Both  of  and  of  are needed in order to know that they are at the same absolute pitch height. A

repeated pitch is the absence of ascent in either order of comparison between a pair of notes.

Return to text

24. Published in 2004 but circulated since the 1990s.

Return to text

25. The folk songs are effectively time-warped through the transcription and may not be equitemporal in performance.

Return to text

26. For further explanation, see Carter-Ényì 2016.

Return to text

27. Analysis available in Carter-Ényì 2016.

Return to text
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