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ABSTRACT: This article presents a transformational model of jazz harmony based on the ii–V–I

progression. This progression is fundamental to jazz harmony, and to its improvised performance. It

serves as the foundation for a more rigorous transformational approach, developed in the first two

sections here. This approach is easily extensible; the final section suggests a few such extensions.
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[0.1] Consider the set of chord changes in Figure 1a: the bridge of Jerome Kern and Oscar

Hammerstein’s “All the Things You Are.” If we imagine ourselves for the moment to be jazz

improvisers, we might consider approaching this passage in a number of different ways. One

approach might be to realize the chord changes as simply as possible (Figure 1b), and then to play

a melody highlighting these chord tones. Another might notice the efficient voice-leading implicit

in the harmonic structure (Figure 1c), and highlight this in our improvisation. A third might

instead divide the music into smaller units, each in a single key (Figure 1d), and use these units as

the basis for an improvised melody. These three techniques for understanding the changes are all

valid, and an experienced musician might move fluidly among them (and countless others not

enumerated here) in the course of an improvisation. This article, though, uses the last of these

approaches as a point of departure: many jazz compositions can be described in terms of their

constituent ii–V–I progressions, and it seems natural to use this progression as the basis for

developing a more general model of jazz harmony.

[0.2] Before ge%ing underway, it will be useful to limit the terms of this study somewhat. The term

in this article’s title, “tonal jazz,” combines two potentially confusing elements. As Steven Rings

reminds us, “‘tonality’ is at once one of the most familiar and most elusive terms in music-

theoretical discourse” (2011, 2), and the word “jazz”—which has been used at various times to

describe artists as diverse as McKinney’s Co%on Pickers, Benny Goodman, Sun Ra, John Zorn, Tito
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Puente, and Brad Mehldau—is not much clearer. Nevertheless, the expression “tonal jazz” seems

to come closest to describing the music in which under consideration here: jazz in which

traditionally functional harmonic progressions are still the norm. Tonal jazz includes much of the

music that most people think of when they hear the word “jazz,” including big-band swing (Count

Basie, much of Duke Ellington’s music), bebop (Charlie Parker, Dizzy Gillespie, Thelonious Monk),

and the mainstream jazz that followed it (John Coltrane’s early work, Sonny Rollins, Bill Evans,

and many others).(1) This definition is admi%edly quite broad, but does exclude music like modal

jazz (in which harmonic progression is of secondary importance), free jazz (in which sometimes

there is no identifiable harmonic progression at all), and various jazz fusion styles (in which the

harmonies sometimes do not function in the same way as mainstream tonal jazz).

[0.3] Why, then, should we turn to transformations to analyze tonal jazz? Schenkerian analysis has

proven to be a vital tool for analyzing tonal music in general, and Steve Larson’s pioneering work

in applying its methods to jazz has led to many productive insights into a wide variety of music.(2)

Transformational theory, by contrast, often focuses on music that is perceived to be somehow less

tonal. As Rings has it:

Neo-Riemannian analysis—with its focus on local, chromatically striking

passages—has led to a view that some works are divvied up into some music that is

tonal (for example, because it is well analyzed by Schenkerian methods) and some that

is transformational (because it is well analyzed by neo-Riemannian methods). But this

is to misconstrue the word transformational, treating it as a predicate for a certain kind

of music, rather than as a predicate for a certain style of analytical and theoretical

thought. (Rings 2011, 2)

As he is right to point out, there is nothing about transformational theory that necessitates its

restriction to this locally chromatic music; his book uses the theory to explain more traditionally

tonal music. It is this use of “transformational” that I wish to bring to bear on tonal jazz in the

present article.

[0.4] Other transformational approaches to jazz exist, but, as with many transformational

approaches for non-jazz repertories, they aim to “model chromatic progressions whose tonal status

is somehow in doubt” (Rings 2011, 2). These approaches often focus on artists whose music is less

clearly tonal, like Chick Corea (Strunk 2016, Waters 2016), Herbie Hancock (Waters 2005), or Wayne

Shorter (Strunk 2003, Waters and Williams 2010); as Rings points out, to use transformational

theory to illuminate “specifically tonal aspects of tonal music” (2011, 2) is to go a step further.(3)

[0.5] Likewise, much of the existing neo-Riemannian literature is not very applicable here either:

many of those analytical models focus only on triads, and nearly all chords in jazz are (at least)

seventh chords.(4) Still, though, it will be useful here to explore those theories that deal in some

way with non-triadic music. This work falls into two basic categories: theories that deal exclusively

with a single type of chord, and those that deal with musical objects of different types.

[0.6] Most of the studies dealing with a single chord type are concerned with members of set class

(0258), the half-diminished and dominant seventh chords. Childs 1998 develops a model for these

chord types that is closely related to standard neo-Riemannian transformations on triads; Gollin

1998 (in the same issue of the Journal of Music Theory) explores three-dimensional Tonne�e more

broadly, with special focus on the dominant and half-diminished seventh chords. In general,

neo-Riemannian-type operations on the (0258) tetrachords turn out to be somewhat less useful than

their triadic counterpoints, owing to the inherent symmetry of set class (0258).(5) Any one

tetrachordal TonneU can only show a subset of all of the (0258) tetrachords, while the familiar

triadic TonneU of course shows all 24 major and minor triads. Recognizing this limitation,

Douthe% and Steinbach 1998 presents a model that also includes minor sevenths and fully
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diminished seventh chords, using a digram they refer to as the “Power Towers” (255–56). While

their description accounts for two of the three main types of seventh chords commonly used in jazz

(it is missing the crucial major seventh), all of these neo-Riemannian models focus on parsimonious

voice leading. While this focus is valuable, it proves to be impractical for the functional harmony

that is the focus of this study.

[0.7] The other group of transformational models consists of what Julian Hook (2007a) has termed

“cross-type transformations”: he extends David Lewin’s definition of a transformation network to

allow for transformations between objects of different types. This category of transformations

contains the inclusion transformations (discussed in both Hook 2002 and Capuzzo 2004), which

map a triad into the unique dominant or half-diminished seventh chord that contains it and vice

versa. Also included here are more general approaches for relating set classes of different

cardinalities, including Joseph Straus’s formulation of atonal voice leading (2003) and Clifton

Callender’s split and fuse operations (1998). Finally, Dmitri Tymoczko’s continuous tetrachordal

space (2011, 93–112) can accommodate all four-note chords, but as Hook (2011, [13–14]) notes,

Tymoczko downplays (and sometimes ignores) the transformational aspects of his geometric

models.

[0.8] One methodological issue does arise when trying to analyze jazz harmony, using

transformations or otherwise: it is often difficult to determine what exactly one should be

analyzing. Lead sheets as circulated in fake books can be highly inaccurate, and often cannot be

relied upon as a single source for any particular jazz performance, since it is rare that performers

play directly from a lead sheet with no modifications.(6) In the case of standards that may have

originated outside of jazz (in movies or musical theater, for example), we might wonder whether

we should rely on the original sheet music instead. In many cases, however, the version usually

played by jazz musicians may be significantly different from the original version, reflecting a

history of adaptation by generations of jazz musicians.(7) To make ma%ers worse for the hopeful

analyst, this knowledge is often hidden, not wri%en down and learned only from more experienced

musicians.

[0.9] Many published jazz analyses rely on transcriptions of particular performances, which can

help to mitigate some of these difficulties of the nature of harmony in jazz. Indeed, if one’s goal is

to analyze a single performance, a transcription of that performance is often a necessary first step.

In this more general study of jazz harmony, though, transcriptions can confuse ma%ers somewhat.

The kinds of questions I am interested in answering here are of the type “What can we say about

harmony in the piece ‘Autumn Leaves?’” and not of the type “What can we say about Bill Evans’s

use of harmony in the recording of ‘Autumn Leaves’ from Portrait in Jazz?” Furthermore, even

transcriptions are not definitive when it comes to harmony: the pianist and guitarist might not be

playing the same chord; the soloist might have a different harmony in mind than the rhythm

section; or the bassist might play a bass line in a way that affects our perception of the chordal root.

[0.10] This is a problem without one clear solution, but for this article, using chord symbols will

serve us well. The chord symbol is a basic unit of harmonic understanding for most jazz musicians,

even when they are not playing from sheet music. Because of their ubiquity and relative simplicity,

chord symbols are able to act as metonyms for the process of harmonic elaboration and

reinterpretation that occurs in the course of jazz performance. The chord symbol E 7 might denote

a different collection of pitches to different performers, or to the same performer at different times

(even throughout the course of a single tune), but to call a chord “E 7” does give important

information about the harmony.(8) The chord symbols here represent what Henry Martin (1996,

5–6) has called the “ideal changes”: a hypothetical set of chords that we can use as a basis for

understanding any variations that might occur in performance. These changes represent a sort of

Platonic model of a composition: individual performances of “Autumn Leaves” can be seen as
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instances of some ideal AVWVXY LZ[\Z]. Determining these ideal changes is often a process of

mediating among published lead sheets, recorded versions, and other sources; below, I have tried

to clarify exactly what harmony is being analyzed in any particular example.

1. A Descending-Fifths Arrangement

[1.1] The most common harmonic progression in jazz is undoubtedly the ii7–V7–IM7 progression

(hereafter, simply ii–V–I, or often just ii–V). It is the first progression taught in most jazz method

books, and is one of the only small-scale harmonic progressions to have an entire Aebersold

play-along volume dedicated to it.(9) As noted in the introduction, the progression is so prevalent

that many jazz musicians describe tunes in terms of their constituent ii–Vs; a musician might

describe the bridge of “All the Things You Are” as being “ii–V to G, ii–V to E, then V–I in F” (recall

Figure 1d).

[1.2] Figure 2 shows a transformation network for a single ii–V–I progression; I will begin by

developing the formal apparatus for this progression, after which we can begin to combine ii–V–I

progressions to form a larger musical space.(10) This figure, with its combination of general Roman

numerals and specific key centers, is designed to reflect how many jazz musicians tend to talk

about harmony; we might read this network as “a ii–V–I in C.” (In this figure, the arrow labeled

“TF” stands for the “two–five” transformation, which is explained in detail below.) The

combination of Roman numerals and key areas bears some similarity to Fred Lerdahl’s chordal-

regional space (2004, 96–97), but Figure 2 is a transformation network, while chordal-regional space

is strictly a spatial metaphor.

[1.3] Transformation networks are a major part of Lewin’s project in Generalized Musical Intervals

and Transformations (GMIT), and have been thoroughly covered in the literature, so the formalism

needs to be considered only briefly here.(11) A transformation network consists of objects of some

kind (here, they are chords) represented as vertices in a graph, along with some relations

(transformations) between them, represented as arrows. In Lewin’s definition, all of the objects in a

transformation network must be members of a single set , and the transformations must be

functions from  into  itself (Lewin [1987] 2007, Definitions 9.3.1 and 1.3.1).

[1.4] The transformation TF in Figure 2 is in fact a cross-type transformation, as defined in Hook

2007a. Hook expands Lewin’s definition of a transformation network to include objects of different

types, necessary to define transformations in the ii–V–I progression. This progression contains

musical objects consisting of three types of diatonic seventh chords: minor, dominant, and major

sevenths. Using Hook’s less restrictive definition, we are free to define transformations from any

set of objects to any other; to understand the figure above, we need to define the transformation TF

such that it maps ii7 chords to V7 chords and V7 chords to I7 chords.

[1.5] Before defining the transformations, however, we need first to define the sets themselves. To

help with this, Figure 3 shows the underlying transformation graph of the transformation network

in Figure 2. Throughout GMIT, Lewin is careful to distinguish transformation graphs from

transformation networks: a graph is an abstract structure, showing only relations between

unspecified set members, while a network realizes a graph, specifying the actual musical objects

under consideration.(12) Because cross-type transformation graphs contain objects of different

types, a node in a cross-type transformation graph must be labeled with the set from which the

node contents may be drawn (Hook 2007a, 7). In Figure 3, the nodes are labeled simply min,

dom, and maj, which we can understand as the sets of minor, dominant, and major seventh

chords, respectively.

[1.6] While at its core the ii–V–I progression contains three types of seventh chords, in reality a jazz

S

S S

S

S S

4 of 24



musician might add any number of extensions or alterations to this basic structure. Given this

practice, defining the archetypal progression as being composed of four-note set classes (seventh

chords) seems unnecessarily restrictive. In order to allow for some freedom in the chord qualities,

we will consider only chordal roots, thirds, and sevenths; these pitches are sufficient to distinguish

the three chord qualities in a ii–V–I.(13)

[1.7] We will represent a chord with an ordered triple , where  is the root of the

chord,  the third, and  the seventh. The definitions of the three sets are as follows:(14)

The definitions are intuitive and have clear musical relevance: ii7 chords have a minor third

(interval 3) and minor seventh (interval 10), V7 chords have a major third and minor seventh

(intervals 4 and 10), and I7 chords have a major third and major seventh (intervals 4 and 11).

Defining the chords this way rather than as four-note set classes offers the great advantage of

flexibility. Using the ordered-triple representation, the progressions Dm7–G7–CM7 and

Dm9( 5)–G7( 13, 9, 9)–CM7( 11) are understood as equivalent, since the roots, thirds, and sevenths

are the same: both progressions are represented – – . Because the sets are

defined in pitch-class space, the three sets all have cardinality 12: each pitch class is the root of

exactly one ii7, V7, and I7 chord.

[1.8] With the space of the nodes defined, we can now formulate the transformation representing a

ii–V–I, which we will call simply “TF”:

If , then

If , then

Again, these definitions are designed to be musically relevant; the voice-leading diagram in Figure

4 illustrates this more clearly.(15) The root of the second chord is a fifth below (or fourth above) the

root of the first ( ), the third of the second chord is a semitone below the seventh of the

first ( ), and the seventh of the second chord is a common tone with the third of the first

( ). (We may also write ii7  V7, rather than TF(ii7) = V7.) Note that the transformation TF

is also valid between V7 and I7—the second equation above, involving sets  and . The fact

that the same transformation describes both ii7  V7 and V7  I7 reflects the similarity of the two

harmonic motions. In Lewin’s transformational language, if a jazz musician is “at a ii7 chord” and

wishes to “get to a V7 chord,” (or at a V7 chord and wishing to get to a I7 chord) the transformation

that will do the best job is the same in both cases: TF, that transformation which moves the root

down a fifth and the seventh down a semitone to become the new third. TF is both one-to-one and

onto for sets of ordered triples; it maps each ii7 to a unique V7, and each V7 to a unique I7. As such,

its inverse ( ) is well defined, and allows motion backwards along the arrows shown in the

transformation graph in Figure 3.

[1.9] It is worth mentioning here that TF and TFT (which is defined in the next section) are

well-defined operations for any ordered triple of members of the integers mod 12 (i.e., a member of

the set ). There is nothing mathematically incorrect about the statement

, for example, but this succession has li%le musical relevance

for the applications under consideration here. Because Hook does not formally define what he

means by a “type,” the formulation allows for situations like this one, in which the three types are

all members of a single larger set.(16) The advantage for defining TF as a cross-type transformation

is that the content of a single node in the transformation graph is restricted to members of a

12-element set of specific ordered-triple configurations.
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[1.10] With this understanding of the transformations involved in a single ii–V–I progression, we

can see how we might connect multiple progressions in order to form a larger ii–V space. Because

root motion by descending fifth is extremely common in jazz, we might consider connecting ii–V–I

progressions by descending fifth; Figure 5 illustrates this arrangement both as a transformation

graph and a transformation network. This descending-fifths arrangement means that all of the

chords sharing a root are aligned vertically (directly below GM7 is G7, which is itself above Gm7),

and allows us to define two more transformations, which we will call simply ₇Wa and ₃cd:

If , then ₇Wa

If , then ₃cd

Like the TF transformation, the ₇Wa and ₃cd transformations have clear musical relevance: each

lowers the given note by a semitone. Although adjacent progressions are connected by descending

fifth, the  labels connecting adjacent ii7 chords and IM7 chords are shown in gray in the graph

(and omi%ed in the network, and in later examples), since these chords are not often directly

connected in jazz.

[1.11] By extending the network of Figure 5, we arrive at the entirety of ii–V space, as shown in

Figure 6. Because ii–V space includes cross-type transformations, it does not easily form a

Lewinian ef].(17) More generally, though, it is easy to see that by considering a single ii–V–I

progression as a unit, ii–V space maps cleanly onto ordinary pitch-class space. As Figure 6 makes

clear, we can consider the ii–V–I in C as being three perfect fifths above the ii–V–I in E  (or put

transformationally, the  operation transforms a ii–V–I in C into one in E ). This formulation does

not allow us a means to say, for example, that “the ii chord in C is  units away from the V chord in

E ,” but because ii–V–Is are rarely split up, falling back on normal pitch-class distance is sufficient

in most situations.(18)

Lee Morgan, “Ceora”

[1.12] Though we will return to formalism below, enough of ii–V space has been defined at this

point to see how it might be useful in analysis. To do so, we will examine Lee Morgan’s

composition “Ceora,” first recorded on the 1965 album Cornbread. The changes for the A section are

given in Figure 7, and an animation in ii–V space is shown in Video 1.(19) “Ceora” is in the key of

A  major, and begins with the progression I–ii–V–I in the first three bars, staying within a single

horizontal slice of ii–V space. This is followed immediately by a ii–V–I progression in D , a fifth

lower (mm. 4–5).

[1.13] At this point, we might expect the ii–Vs to continue in descending fifths, but the potential ii7

chord in G  (A m7) is substituted with Dm7, its tritone substitute, which then resolves as a ii–V in

C.(20) Instead of resolving to C major in m. 7, this ii–V resolves instead to C minor: both the seventh

and third of the expected CM7 are lowered to become Cm7. (This progression is extremely

common, and is one of the principal means of maintaining harmonic motion in the course of a jazz

tune.)

[1.14] A similar progression in B  follows, leading to a B m7 chord in m. 9, which becomes part of a

ii–V progression in the tonic in mm. 9–10. The expected A M7 does not materialize, though; the E 7

chord moves instead to Cm7 as ii of B  (a northwesterly move in the space). This deceptive

resolution of the dominant seventh is repeated in mm. 11–13, leading back to the Dm7 chord first

heard in m. 6. The repeated upward motions in the space have the effect of ramping up the tonal

tension in the passage; not only do the dominants in mm. 10 and 12 fail to resolve as expected, but

their stepwise rising motion takes the music far away from the tonic A . To release this harmonic

tension, the ii–V in C resolves at m. 15 to C minor, at which point the harmonic rhythm doubles

and the progression follows the normal descending-fifths pa%ern to retrace the stepwise descent
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and reach the tonic that begins the B section in m. 17.

[1.15] The B section of “Ceora” (the changes to which are shown in Figure 8) is nearly identical to

the A section until the last four bars; the only differences are the addition of the 5 in the Cm7 and

the 9 in the F7 in mm. 11–12 of the section. Because we have defined chords and transformations

only in terms of chordal roots, thirds, and sevenths, neither of these changes affect our

transformational reading of the passage. Instead of ramping up to ii7 of C as in the A section, the

ii–V in B  resolves to B m7 in m. 12. This B m7 becomes the ii chord of a ii–V–I in tonic, resolving

in m. 15 of the section. A final ii–V in the last measure provides additional harmonic interest, and

functions as a turnaround that leads smoothly back to A M7 for the beginning of the next chorus.

[1.16] At this point, we have successfully mapped all of the chords in “Ceora” to their associated

locations in ii–V space; it is reasonable to ask, though, what good this mapping of chords to space

locations has done. After all, ii–V space contains each minor, dominant, and major seventh chord

exactly once, so we did not even need to make any decisions as to where in the space a particular

chord should go. Have we, in fact, learned anything about “Ceora” from this initial exploration of

ii–V space?

[1.17] To be sure, the foregoing discussion has not produced a complete picture of “Ceora”:

nothing at all has been said about the melody, any of its inherent middleground voice-leading, the

way in which pianist Herbie Hancock expresses any of the harmonies, how this harmonic structure

is elaborated in the ensuing improvisations, and so on. Just as applying Roman numerals to a

passage of tonal music does not constitute a complete analysis, so too is the representation of

“Ceora” in ii–V space a first step. Because ii–V space is designed to show paradigmatic harmonic

motion in jazz, the visual representation allows us to focus on those passages which are distinctive:

the representation in ii–V space highlights that the first five bars of the tune are relatively

unremarkable, while the unresolving, upward-moving ii–Vs in mm. 9–14 draw our a%ention.

[1.18] That this analytical interlude has not produced a synthetic analysis of “Ceora” is emblematic

of what Rings sees as a feature of transformational theory and analysis in general. Drawing on

Lewin’s initial description of his transformational enterprise (2007, 16), Rings writes that “to the

extent that such [transformational] analyses reveal ‘structures’ at all, they are esthesic structures

rather than immanent ones” (2011, 37, emphasis original). A transformational analysis can rarely

purport to describe “the structure of a piece”; rather, a transformational approach can offer

multiple perspectives (or “apperceptions”) of a single aural phenomenon. To be fair, this

discussion of “Ceora” has offered only one such perspective; to embrace others, it will be useful to

continue filling out the details of ii–V space.

2. Tritone Substitutions

[2.1] There is an important aspect of jazz harmony that has not yet been considered in our

discussion of ii–V space. Crucial to harmony beginning in the bebop era is the tritone substitution:

substituting a dominant seventh chord for the dominant seventh whose root is a tritone away.(21)

Because tritone-substituted dominants are functionally equivalent, both the progressions

Dm7–G7–CM7 and Dm7–D 7–CM7 may be understood as ii–V–I progressions in the key of C.

[2.2] This functional equivalence means that a tritone-substituted dominant can act as a shortcut to

an otherwise distant portion of ii–V space. In the circle-of-fifths arrangement of Figure 6, keys

related by tritone are maximally far apart (diametrically opposed on the circle), but in jazz practice,

G7 and D 7 are functionally identical (both are dominant-function chords in C major). To account

for this progression in our space, we need somehow to bring these chords closer together; one

solution is to connect two segments of the space by  in a “third dimension,” as shown in FigureT

6
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9. The topology of this space is more complicated than the ordinary circle of fifths, however. Once a

progression reaches the bo%om of the “front” side of the figure, it reappears at the top of the

“back” side (G  at the bo%om is listed again as F  at the top); likewise, progressions disappearing

off the bo%om of the back side reappear at the top of the front side (C major is shown in both

locations).

[2.3] This arrangement of key centers is topologically equivalent to a Möbius strip, which is

somewhat easier to see by focusing only on the dominant seventh chords, as shown in Figure

10.(22) By wrapping this figure into a circle and gluing the left and right edges together with a

half-twist (so that the two G7 chords and D 7/C 7} match up), we arrive at the desired Möbius

strip. Though the underlying topology is easier to visualize this way, it is difficult to include all of

the other progressions (the ii–Vs themselves) in this diagram, so we will continue to use the three-

dimensional version of Figure 9, with the understanding that this topology remains in effect. In any

case, the arrangement of keys into the front and back sides is arbitrary, and may be repositioned as

necessary; it is often convenient to have the tonic key (when there is one) centrally located at the

front of the space.

[2.4] While it is possible to navigate this space using only the transformations TF and , it is

convenient to define another transformation to describe a common progression like

Dm7–D 7–CM7. We will call this transformation TFT, to highlight its relationship to the more

normative TF:

If , then TFT

If , then TFT

The TFT transformation represents a tritone substitution, but it transforms bass motion by fifth into

bass motion by semitone (not bass motion by tritone); Figure 11 highlights the relationship with the

ordinary TF. Because TF and  commute, TFT can be considered as either TF followed by , or

vice versa. With this new transformation, we can understand the progression A m7–D 7–CM7 as a

substituted ii–V–I in C:

A m7 D 7  CM7.

[2.5] The introduction of tritone substitutes complicates the space somewhat; Figure 12 shows a

transformation network of the same portion of the space as in Figure 5, but with some chords

replaced with their tritone substitutes (shown in green).(23) The relationship between a substituted

dominant in G major (A 7) and the substituted ii7 chord in C (A m7) is still, of course, a ₃cd

transformation. The substituted V7 in C moving to the diatonic V7 in F changes the transposition

from a descending fifth to a descending half-step, as indicated by the  arrow.

[2.6] Perhaps most interesting in this tritone-substituted space is the new relationship between a

major seventh chord and the substituted ii7 in the progression a fifth below (in this figure, between

GM7 and A m7). Normally the voice-leading connection between these two chords is fairly

inefficient (GM7 to Dm7 requires four semitone displacements), but with the substituted ii7, the

third and seventh are both held as common tones, and the root and fifth of the chord both ascend

by semitone (from G–B–D–F  to A –C –E –G ).(24) Because of its similarity to the standard ]ifdZ

transformation, with the addition of the common-tone seventh, we will call this transformation

]ifdZ7:(25)

If , then ]ifdZ7

In jazz this progression occurs frequently when moving between key centers related by half step,

though it is uncommon in classical music.(26) We have encountered this transformation once
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already: the motion from D M7 to Dm7 in mm. 5–6 of “Ceora” is a typical ]ifdZ7 transformation

(see Figure 13).

Charlie Parker, “Blues for Alice”

[2.7] Equipped with these new tritone-substitution transformations, we can now analyze somewhat

more chromatic music; Charlie Parker’s “Blues for Alice” will serve as a useful example (the

changes are given in Figure 14).(27) The essential structure of the blues is present: the tune arrives

on a subdominant in m. 5, and on a home-key ii–V in m. 9 of the twelve-bar form.

[2.8] Parker elaborates this basic structure with a series of stepwise descending ii–V progressions

(see Video 2). The first of these is a diatonic descent: m. 2 jumps from the tonic F major to a ii–V in

D, which resolves (via the ₇Wa and ₃cd transformations) to a Dm7 chord as the ii7 of C major. We

first saw this progression in “Ceora” (mm. 6–7), where I noted that it is a very common way of

maintaining harmonic motion; instead of a ii–V resolving to its tonic, it resolves to the minor

seventh chord with the same root.(28) Because this progression is so common, it is convenient to

define it as its own transformation, which we will call EC (for “evaded cadence” or “elided

cadence”).(29) Unlike TF, EC is practical only as a transformation from V7 chords to ii7 chords:

If , then EC

EC is of course equivalent to TF • ₇Wa • ₃cd, but only when the starting chord is a V7 chord (a

member of ).(30) In ii–V space, EC can be represented by starting on a dominant, then

following one arrow to the right and two arrows downward (since two descending fifths combine

to produce a descending whole step). The structure of the space immediately shows that EC is

impossible beginning on a ii7 chord; we can follow a single arrow to the right, but there is only one

downward arrow from a V7 chord.(31)

[2.9] This pa%ern of stepwise descending ii–Vs continues until arriving at the subdominant B  in m.

5, which includes the standard blues alteration of the lowered seventh.(32) The intuition that this

B 7 is in fact a relatively stable harmony, rather than merely a descending-fifth transposition of F7,

can be captured to some extent in our transformational labels (we will return to this resolution in

the next section). Instead of labeling this progression F7 B 7}, we might instead label it as F7

B 7}; this designation tries to express the notion that the B 7 chord is heard as a resolution

to a stable chord (the TF transformation) that has merely been inflected with the lowered seventh

(the ₇Wa transformation). Combining this with the rest of mm. 2–5, it is easy to construct a

transformation network:

Em7( 5)  A7  Dm7  G7  Cm7  F7 B 7

[2.10] After this B 7 chord, Parker uses a chromatic stepwise pa%ern of ii–Vs (mm. 5–10), in which

the earlier descending fifths are transformed into descending semitones via the tritone substitution:

B m7 E 7  Am7  D7 A m7 D 7  Gm7

(Here, ECC is the chromatic variant of EC, equivalent to TF • ]ifdZS, applied to a dominant seventh

chord.) Once this sequence arrives on Gm7 as the ii chord of the tonic F, there is a ii–V–I

progression in the home key. After the resolution in m. 11, the progression moves backwards

through fifths space to begin a VI–ii–V turnaround to F major to begin the next chorus.(33) As with

“Ceora,” there is still much to be said about “Blues for Alice”; we will return to this piece below.
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Minor Tonic Chords

[3.1] As it has been developed thus far, ii–V space has a glaring omission: it requires that all tonic

chords be major sevenths. Certainly there are jazz tunes in minor keys, and thus there is a need to

account for the minor tonic. We have already seen ii–V progressions that resolve to minor chords

—recall the transformation EC in the previous section—but the only minor chords in the space are

ii7 chords, not tonics. One of the advantages of ii–V space is that it is easily extended to account for

harmonic features specific to particular situations; this section presents one such extension that

allows for stable minor tonic chords.

[3.2] The minor ii–V–i progression is usually played as ii7( 5)–V7( 9, 5)–imM7.(34) Because we are

working with ordered triples of only roots, thirds, and sevenths in this article, the alteration of the

fifth and ninth have no effect on our definitions of  and  above.(35) We do, however, need

to formally define the set of minor-major seventh chords (chords with a minor third and major

seventh): .

[3.3] With this definition in place, we can explore how this set interacts with the three sets we have

already encountered. These transformations are shown summarily in Figure 15; the formalism

underlying them is straightforward, and has been omi%ed here. The ₃cd and ₇Wa transformations

both work intuitively, and transform a chord’s quality without changing its root (shown in the left

side of the figure). It will also be useful to define versions of the TF and TFT transformations that

transform a dominant seventh into a minor tonic, equivalent to TF • ₃cd or TFT • ₃cd. We will call

them simply “tf” and “tfT” (the lowercase here is meant to parallel the use of lowercase le%ers to

indicate minor triads). Note that unlike the standard TF and TFT transformations, tf and tfT only

transform V7 chords to ImM7 chords; the same transformations do not hold for ii7 to V7.

[3.4] Figure 16 shows a small portion of ii–V space that includes minor tonic chords, illustrating the

transformations described in the previous paragraph.(36) Because most jazz tunes do not contain

exclusively minor chords, this figure gives both major and minor tonic chords in every key.

Though we will not do so here, determining how to fill in the figure with tritone substitutions, or to

arrange it around the circle of fifths in the manner of Figure 6, is easy enough to imagine (if not to

draw, given the added complexity of the minor-major sevenths).

[3.5] By way of a brief example, Figure 17 gives the changes for Miles Davis’s “Solar.” This tune is

in C minor, though that is not immediately apparent from the changes themselves; in the canonical

recording of this piece (from Davis’s own Walkin’), the C minor chords are played as minor-major

sevenths, and the piece ends on a CmM7 chord, clarifying its status as the tonic. The fact that the

only tonic chord appears in the opening bar of the form gives performances of this tune even more

of a cyclical quality than is usual in jazz. By not arriving on a tonic at the end of the short 12-bar

form, Davis achieves a formal elision at every chorus: the opening tonic serves simultaneously as

the harmonic resolution of the previous chorus and the formal beginning of the next.

[3.6] The visualization in ii–V space, shown in Video 3, is mostly unremarkable. Note that the

usual CM7 at the top of the space has been replaced in this video with a minor tonic, CmM7, and as

such there is no arrow between the C-minor tonic and V7/F. This analysis, though, is not possible in

the ii–V space of the previous section, since the C-minor harmony of the first bar is decidedly not a

ii7 chord (it would be ii of B , and there is no F7 dominant or B  major harmony in the piece at all).

Other Kinds of Tonic Chords

[3.7] The problem of tonic chords that happen to be minor-major seventh chords has now been

solved, but in fact the problem is more general: it would be nice to have some way of allowing for

any kind of tonic chord we might find in actual practice. James McGowan (2005, 76–79) has argued
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for what he calls three “dialects of consonance” in jazz (extended tones we might consider

consonant): the added sixth, the minor seventh, and the major seventh. So far, this article has

focused only on the major-seventh dialect, when it appears atop both major and minor triads.

Many Tin Pan Alley tunes end with tonic add-6 chords (which appear nowhere in ii–V space), and

as we noted in our discussion of “Blues for Alice,” it is very common for a blues tonic to be a

major-minor seventh chord (a type that appears only as V7 chords in the space).

[3.8] The solution to this shortcoming of the space is to introduce some general transformation

(which we might call “RZ]I”, for “resolve to I”) that could be redefined as needed for each style.(37)

The generic space would then appear as it does in Figure 18. This space is still arranged in perfect

fifths, and the basic shape of the ii–V–I progressions is still present, but the quality of the tonic

chords is unspecified. Before using this space in analysis, of course, we must actually define what

we mean by a “tonic chord” in a given situation. Because ii–V space contains cross-type

transformations, both the set of tonic chords and the transformation RZ]I, from  to the set of

tonics, need to be defined.(38) (By defining RZ]I to be equivalent to TF and defining tonic chords to

be members of , for example, the generic space here becomes the specific layout of ii–V space

first presented in Figure 9.)

[3.9] Again, it will be easiest to demonstrate exactly how this generic space might be realized by

means of an example. In the analysis of “Blues for Alice” above, we noted that the B 7 chord in m.

5 served as the resolution of the ii–V in the preceding bar, but contained the lowered seventh,

which is typical for the blues. There, we tried to capture the intuition that the B 7 was stable by

labeling the transformation as TF • ₇Wa: a resolution merely inflected with the lowered seventh.

This transformation, though, still results in the B 7 as a dominant seventh chord (it appears in the

space only as V7 of E ).

[3.10] The generic RZ]I transformation offers a be%er solution, in that we can define a “blues TF,”

which resolves a V7 to a tonic major-minor seventh:

If , then

Note that TFblues is equivalent to , but is defined in a way to demonstrate its similarity to TF (see

the voice leading in Figure 19; TFblues is undefined on ii7 chords). We have also defined the set

IMm7, the set of tonic major-minor seventh chords; this seems intuitive, but is somewhat

complicated. IMm7 is exactly equivalent to —in the language of mathematical set theory,

they are the same set. The difference between them is not structural, but interpretive: IMm7 is the

set of tonic major-minor seventh chords, while  is the set of dominant major-minor sevenths.

This distinction allows us to capture the difference between B 7 as a stable resolution (as it is in m.

5 of “Blues for Alice”) and B 7 as V7 of E  (as in m. 8 of “Solar”, for example).

[3.11] This sort of interpretive analysis lies at the heart of Rings’s work in Tonality and

Transformation; the ef]es he develops there are designed to capture the intuitions that collections of

pitches can be heard (or experienced) differently in different contexts. We can adapt this work

slightly to capture the intuition that tonic major-minor sevenths are experienced differently than

dominant major-minor sevenths; this formalism is necessary if we are to understand  and

IMm7 to be different sets (which we must, since tonic major-minor sevenths cannot stand in for

true dominant sevenths in ii–V space, or vice versa). The tonal ef] Rings develops in his second

chapter consists of ordered pairs of the form (scale degree, acoustic signal); as he has it, “the

notation ( , x) . . . represents the apperception: ‘scale degree seven inheres in acoustic signal x’”

(2011, 44). Rings goes on to describe sets of these ordered pairs, which we will use to capture our

intuitions about the varying roles of the B 7 chord, as shown in Figure 20. Here, the left figure
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(read bo%om to top as root, third, seventh) represents B 7 as a dominant seventh of E  (i.e., with ,

 , and ) while the right figure represents the same three pitch classes as a tonic major-minor

seventh (with , , and ).(39) Rings’s system of heard scale degrees allows us to distinguish

between the sets IMm7 and : the B 7 in m. 5 of “Blues for Alice” is a member of IMm7, while

the B 7 in m. 8 of “Solar” is a member of .

[3.12] With the distinction between tonic and dominant major-minor sevenths worked out, we can

now specify the generic space of Figure 18 to create what we might call a “blues ii–V space”; a

small portion of this space is shown in Figure 21. This space, though, presents another

complication: the top arrow marked with a question mark represents a transformation from B 7 as

tonic to B 7 as dominant. The pitch classes remain the same, but the quale of the chord changes

from tonic to dominant, so this transformation is not simply the identity ( ).

[3.13] Because this transformation is one of quale, Rings’s tonal ef] again provides an explanation.

Intervals in this ef] are measured with ordered pairs, like the elements themselves: the first element

is a scale-degree interval (measured upward), and the second is a pitch-class interval (Rings 2011,

46–48). “Pivot intervals” are those intervals where the second element of the pair is 0. In the

situation here, we have what Rings would call a “pivot fifth” between the two B 7 chords (see

Figure 22). The pitch-class interval here is 0, since both chords contain B , D, and A , and the scale-

degree interval is a 5th (  to ,  to , and  to ). With this transformation defined, we can now

more fully realize our intuitions about the short passage in “Blues for Alice” (mm. 4–6):(40)

. . . Cm7  F7 B 7 B m7 E 7 . . .

Interaction with Diatonic Spaces

[3.14] The preceding consideration of other kinds of tonic chords has taken us relatively far afield

from the starting point of this article, and indeed these extensions are not necessary to understand

most tonal jazz. For many purposes, the conventional space developed in Sections 1 and 2 will be

sufficient. What is missing in this treatment so far, though, is the concept of a global tonic. As noted

above, this article focuses on tonal jazz, and most of this music is in a key (certainly all of the

examples considered here are). To this point, we have acknowledged this fact only by mentioning

the key of a particular tune in our analytical commentary, or circling the tonic chord in a

representation of the space. Defining ii–V space as a fully chromatic space has many advantages: it

is rare that every chord in a tune can be understood in a single key, and it is convenient not to have

to switch continually between diatonic collections.(41) Moreover, chromatic spaces are much more

regular than their diatonic counterparts: chromatic step size is consistent, while diatonic step size

varies between one and two half steps.

[3.15] Still, given that all the examples here do have a global tonic, it seems wise to consider what a

diatonic ii–V space might look like. The space was first made chromatic by arranging individual

ii–V–I progressions in descending fifths (recall Figure 6). We could instead arrange the space

according to the diatonic circle of fifths, as shown in Figure 23. This space looks much like the

chromatic space, with the exception of the diminished fifth between  and , where the regular

transformational structure of the chromatic space breaks down. The change of the descending

perfect fifth ( ) to a diminished fifth ( ) means that all of the transformations linking these two

key areas must all be combined with : C7 C m7, C7 F 7, and FM7 F 7.

[3.16] Unlike chromatic space (which can only be generated by half-steps and perfect fifths),

diatonic space can be generated by any of its members.(42) Diatonic ii–V space, then, offers the
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interesting possibility of departing from the fifths-based space used so far, in favor of some other

organization of the space (since any interval we might choose will generate the entire space). To see

how such an organization might allow us to capture different kinds of analytical insights, I will

return to briefly to Morgan’s “Ceora.”

[3.17] In the analysis of “Ceora” above, it was apparent that the whole tune takes place in four key

areas: D , C, B , and the global tonic A . Given this organization, we might consider arranging ii–V

space in descending diatonic steps, as shown in Figure 24. (The entire figure could be wrapped

around a circle so that the identical ii–V–I progressions in A  at the top and bo%om of the figure are

aligned.) This arrangement into steps means that the key areas used in the tune are adjacent in the

space; in the chromatic space of Video 1, they were separated by an intervening fifth.

[3.18] This figure is structurally a bit different than the other spaces explored thus far, so it will be

helpful to examine it in some detail before returning to “Ceora.” The arrangement into descending

steps means that we can no longer align all of the seventh chords sharing a root.(43) The GM7 and

Gm7 (as ii7/F) chords are close to one another, for example, but G7 (V7/C) is farther removed. The

key areas in this figure are not connected by , but instead by the diatonic transposition operator

: all of the roots of the major seventh chords (reading down the right side of the figure) are

members of the 4-flat diatonic collection.(44) Though the diatonic distance between key areas is

consistent, the chromatic distance varies: there are two points in the space in which the connection

between key areas is a half step rather than whole step (compare, for example, FM7 E M7 and

D M7  CM7).

[3.19] As noted above, the tritone appearing in diatonic space alters the transformational structure

somewhat: transformations spanning this tritone must must be combined with . Here, the

relationship between most IM7 and ii7 chords is the transformation ₇Wa • ₃cd, but between the keys

of D  and C (as well as A  and G), it is ₇Wa • ₃cd • . This transformation is in fact equivalent to

the transformation ]ifdZ7 (see the detail in Figure 25); the diatonic origin of ]ifdZ7 is one of the

reasons it is so common in tonal jazz.

[3.20] All of “Ceora” takes place in a relatively small portion of diatonic ii–V space; Video 4 gives

an analysis of the A section in this space.(45) The analysis of course looks very similar to the

analysis above, but the stepwise arrangement of the space helps us to show different analytical

insights. Moves in the space that are relatively close in the chromatic fifths arrangement in Video 1

appear much larger in this arrangement (for example, the move from A M7 to E m7 in mm. 3–4),

and vice versa (the ]ifdZ7 from D M7 to Dm7 in mm. 5–6).

[3.21] It is worth noting at this point that although the space has been adapted to show aspects of

diatonicism, the space itself is still chromatic. The transformations are still defined on ordered

triples of mod-12 (not mod-7) integers, and nothing in the ii–V–I progressions themselves has

changed. The guiding influence of a diatonic collection is used only to choose the key centers that

are shown in any particular representation of the space. This use reflects the nature of jazz

harmony itself; tunes are often globally diatonic (in a key), while locally chromatic, using ii–V–I

progressions to tonicize other key areas to a much greater extent than is usually seen in classical

music. The reason for this may be largely practical. The head–solos–head form of most jazz means

that we hear the same progression repeated many times (Morgan’s recording of “Ceora” runs

about 6½ minutes, for example), and using only pitches from the A -major diatonic collection

would quickly become boring.

[3.22] The arrangement of ii–V space in Figure 24, combining chromatic and diatonic operations, is

mathematically complicated. As Rings observes, transformation networks involving both

chromatic and diatonic operations violate Lewin’s formal definition of a transformation network,
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since they act on different sets (Rings 2011, 98–99). The underlying transformation graph is not

path-consistent, since the transformation ]ifdZ7 • TF • TF is in general not equal to the

transformation .(46) Put another way, pu%ing GM7 in the top row of Figure 24 while leaving the

transformational labels unchanged does not work: obeying the  arrow requires FM7 to occupy

the row below, but following the other path would yield F M7. The graph is, however, realizable: it

is possible, as the figure itself a%ests, to fill in the nodes such that the arrows do make sense (Hook

2007a, 29). Both Rings and Hook have shown that transformation networks that are not

path-consistent—like the diatonic ii–V space described in this section—can nevertheless be

analytically productive.

4. Conclusions

[4.1] Before drawing to a close, I will return once more to “Blues for Alice.” This tune has been

discussed twice already: the first simply to illustrate how tritone substitutions fit into ii–V space,

and the second to formalize our intuitions about the stable B 7 chord in m. 5. In neither of these

discussions was anything said about the first two chords of the tune: FM7–Em7( 5). In ii–V space,

these chords are relatively far apart (4 edges): FM7  F7  B7  E7  Em7. Because ii–V

space prioritizes harmonic motion by fifth, chord progressions—like this one—that do not move

that way appear quite distant in the space.

[4.2] But on the other hand, FM7 and Em7( 5) seem quite close by other metrics, and a jazz

musician would probably not hear the motion as one involving any great distance. On an initial

hearing, the Em7( 5) may not be heard as ii7/Dm, but rather as a diatonic viiø7 chord.(47) This

hearing suggests yet another alternative interpretation: one against an F-major diatonic

background. As noted in the preceding analysis of “Ceora,” the diatonic collection was used only

to choose the tonic chords in the space. The functional viiø7 chord suggests a slightly different

approach for “Blues for Alice.” Figure 26 shows the diatonic seventh chords in F major, arranged

around the circle of fifths. We can define a transformation, DC (for “diatonic cycle”), that

transforms one diatonic seventh chord into the diatonic seventh chord whose root lies a diatonic

fifth below: thus, FM7 B M7, Gm7  C7, and so on.(48) (Note that for the transformations ii7

 V7 and V7  IM7, DC is equivalent to TF.)

[4.3] Figure 27 illustrates how one might hear the opening bars of “Blues for Alice” as derived from

this diatonic background. Figure 27a gives the progression as it would appear diatonically in F

major; the notation DC2 indicates two successive applications of DC, here describing a motion from

IM7 to viiø7.(49) In 27b, the chords rooted on A and G have been transformed from minor sevenths

into dominant sevenths via the inverse-₃cd operation. This has the effect of turning the chain of DC

transformations into the TF and EC transformations observed in Section 2 above. In 27c, the

diatonic progression C7–FM7–B M7 is changed into a ii–V–I in B  major; this involves both a ₃cd

and ₇Wa transformation, and eliminates the remaining DC transformations in mm. 4–5. Finally, the

B M7 is blues-inflected into B 7 in 27d, supplanting the final TF with TFblues.

[4.4] The resulting progression in Figure 27d is Parker’s original, and captures the intuition that the

motion from FM7 to Em7( 5) is heard as a diatonic motion in F major, which then kicks off a chain

of ii–Vs that is heard in chromatic space. Video 5 visualizes the entire tune in a similar vein: here,

the F-major diatonic circle of fifths is joined with one in B (or C ) major, connected by  arrows.

When a chord has been transformed into a dominant (via either a ₃cd or ₇Wa transformation), a

green highlight appears in the video. (The blue highlight on the diatonic B m7( 5) indicates that it

is an ordinary m7 chord, rather than a diatonic half-diminished seventh.)

[4.5] Rings has described the transformational apparatus as prismatic, an approach “in which

multiple phenomenologically rich local passages are refracted and explored from multiple

t
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perspectives” (2011, 38); the three discussions of “Blues for Alice” in this article demonstrate the

utility of this approach. As listeners and analysts, we need not decide which hearing of the opening

five bars represents the structure of the piece. Rather, we can use the transformational approach

developed in this article to explore these intuitions in a more formal manner. In some situations,

we might wish to hear the motion from FM7 to Em7( 5) as a motion by diatonic step, and in others

we might wish to hear it as a large jump in fifths-space.

[4.6] As Hook notes in his review of GMIT, “transformation theory is a large and varied toolbox:

there are only some minimal instructions for using the tools, and no designs at all for what can

build with them” (2007b, 166). This article, as it were, has used the toolbox to build another tool:

the spaces developed here offer a foundation for applying a prismatic transformational approach to

tonal jazz. One might use transformations to explore intuitions about how players express

harmony over the course of a recorded performance (or several different performances), or how a

listener’s understanding of a harmonic progression changes over time. Though the examples here

have focused on small-group jazz, the transformational approach would also bring valuable insight

to music in which the harmony is more tightly controlled, such as big-band arrangements and

compositions. Perhaps more practically, visualizing tunes in ii–V space may help musicians

already familiar with jazz to learn or memorize tunes, by grouping similar harmonic progressions

together. (This has been an unexpected benefit of ii–V space in my own playing!)

[4.7] My transformational approach to tonal jazz may also intersect fruitfully with the existing

transformational literature. Although my aim here (following Rings) has been to view traditionally

tonal harmonic progressions through a transformational lens, this approach could be combined

with existing transformational methods for analyzing the music of composers like Chick Corea,

Herbie Hancock, or Wayne Shorter (cited in the introduction), where functional tonality is less

obviously present but usually not forsaken entirely. The flexibility of the ordered-triple

representation in particular may prove productive in this regard, since it allows for transformation

definitions that are still valid when the actual realization of a chord might differ greatly from

instance to instance. The syntax of jazz harmony as globally diatonic, yet locally chromatic, is

shared with much 19th-century chromatic music, and some of the ideas here might be imported

there, where other kinds of transformational analysis have already been shown to be useful.(50)

[4.8] It hardly needs to be said that examining ii–V–I progressions does not constitute a complete

theory of jazz harmony, but thinking transformationally about tonal jazz allows for a deeper

understanding of this music. To be sure, there are circumstances in which other methodologies

may lead to more productive insights than transformational ones, but the opposite seems to be

equally true. Jazz, in particular, admits a multitude of approaches for making music—it seems

natural to embrace analytical pluralism as well.

Michael McClimon

Furman University

Music Department

3300 Poinse% Highway

Greenville, SC 29613

michael@mcclimon.org

Works Cited

Aebersold, Jamey. 1974. The II–V7–I Progression. Jamey Aebersold Play-A-Long Series, vol. 3. Jamey

Aebersold Jazz.

15 of 24



Aebersold, Jamey, ed. 1978. Charlie Parker Omnibook. Atlantic Music Corp.

—————, ed. 1979. Turnarounds, Cycles, and II/V7s. Jamey Aebersold Play-A-Long Series, vol. 16.

Jamey Aebersold Jazz.

—————, ed. 1999. Dominant Seventh Workout. Jamey Aebersold Play-A-Long Series, vol. 84. Jamey

Aebersold Jazz.

Biamonte, Nicole. 2008. “Augmented-Sixth Chords vs. Tritone Substitutes.” Music Theory Online 14

(2).

Callender, Clifton. 1998. “Voice-Leading Parsimony in the Music of Alexander Scriabin.” Journal of

Music Theory 42 (2): 219–33.

Capuzzo, Guy. 2004. “Neo-Riemannian Theory and the Analysis of Pop-Rock Music.” Music Theory

Spectrum 26 (2): 177–99.

Childs, Adrian P. 1998. “Moving Beyond Neo-Riemannian Triads: Exploring a Transformational

Model for Seventh Chords.” Journal of Music Theory 42 (2): 181–93.

Cohn, Richard. 2012. Audacious Euphony: Chromatic Harmony and the Triad’s Second Nature. Oxford

University Press.

DeVeaux, Sco%. 1997. The Birth of Bebop: A Social and Musical History. University of California Press.

Douthe%, Jack, and Peter Steinbach. 1998. “Parsimonious Graphs: A Study in Parsimony, Contextual

Transformations, and Modes of Limited Transposition.” Journal of Music Theory 42 (2): 241–63.

Gollin, Edward. 1998. “Some Aspects of Three-Dimensional TonneUe.” Journal of Music Theory 42 (2):

195–206.

Harrison, Daniel. 1994. Harmonic Function in Chromatic Music: A Renewed Dualist Theory and an Account

of Its Precedents. University of Chicago Press.

Hook, Julian. 2002. “Uniform Triadic Transformations.” Journal of Music Theory 46 (1/2): 57–126.

—————. 2007a. “Cross-Type Transformations and the Path Consistency Condition.” Music Theory

Spectrum 29 (1): 1–40.

—————. 2007b. “David Lewin and the Complexity of the Beautiful.” Intégral 21: 155–90.

—————. 2008. “Signature Transformations.” In Music Theory and Mathematics: Chords, Collections,

and Transformations, edited by Jack Douthe%, Martha M. Hyde, and Charles J. Smith, 137–60.

University of Rochester Press.

—————. 2011. Review of Dmitri Tymoczko, A Geometry of Music: Harmony and Counterpoint in the

Extended Common Practice (Oxford University Press, 2011). Music Theory Online 17 (3).

—————. 2013. “Contemporary Methods in Mathematical Music Theory: A Comparative Case

Study.” Journal of Mathematics and Music 7 (2): 89–102.

Kernfeld, Barry. 2006. The Story of Fake Books: Bootlegging Songs to Musicians. Scarecrow Press.

Larson, Steve. 1998. “Schenkerian Analysis of Modern Jazz: Questions about Method.” Music Theory

Spectrum 20 (2): 209–41.

—————. 2005. “Composition versus Improvisation?” Journal of Music Theory 49 (2): 241–75.

16 of 24



Lerdahl, Fred. 2004. Tonal Pitch Space. Oxford University Press.

Levine, Mark. 1989. The Jazz Piano Book. Sher Music.

—————. 1995. The Jazz Theory Book. Sher Music.

Lewin, David. [1987] 2007. Generalized Musical Intervals and Transformations. Oxford University Press.

Love, Stefan. 2013. “Subliminal Dissonance or ‘Consonance’: Two Views of Jazz Meter.” Music Theory

Spectrum 35 (1): 48–61.

Martin, Henry. 1988. “Jazz Harmony: A Syntactic Background.” Annual Review of Jazz Studies 4: 9–30.

—————. 1996. Charlie Parker and Thematic Improvisation. Scarecrow Press.

—————. 2011. “Schenker and the Tonal Jazz Repertory.” Dutch Journal of Music Theory 16 (1): 1–20.

McClimon, Michael. 2016. “A Transformational Approach to Jazz Harmony.” PhD diss., Indiana

University.

McFarland, Mark. 2012. “Schenker and the Tonal Jazz Repertory: A Response to Martin.” Music

Theory Online 18 (3).

McGowan, James. 2005. “Dynamic Consonance in Selected Piano Performances of Tonal Jazz.” PhD

diss., Eastman School of Music.

—————. 2011. “Psychoacoustic Foundations of Contextual Harmonic Stability in Jazz Piano

Voicings.” Journal of Jazz Studies 7 (2): 156–91.

Mulholland, Joe, and Tom Hojnacki. 2013. The Berklee Book of Jazz Harmony. Berklee Press.

Owens, Thomas. 1995. Bebop: The Music and its Players. Oxford University Press.

Pöhlert, Werner. 1989. Basic Harmony. Trans. Jürgen Krohn and Norman Bowie. Werner Pöhlert

Publications.

The Real Book. n.d. 6th ed. Hal Leonard.

Rings, Steven. 2011. Tonality and Transformation. Oxford University Press.

Straus, Joseph. 2003. “Uniformity, Balance, and Smoothness in Atonal Voice Leading.” Music Theory

Spectrum 25 (2): 305–52.

Strunk, Steve. 1996. “Linear Intervallic Pa%erns in Jazz Repertory.” Annual Review of Jazz Studies 8:

63–115.

—————. 2003. “Wayne Shorter’s Yes and No: An Analysis.” Dutch Journal of Music Theory 8 (1):

40–56.

—————. 2016. “Tonal and Transformational Approaches to Chick Corea’s Compositions of the

1960s.” Music Theory Spectrum 38 (1): 16–36.

Terefenko, Dariusz. 2014. Jazz Theory: From Basic to Advanced Study. Routledge.

Tymoczko, Dmitri. 2011. A Geometry of Music: Harmony and Counterpoint in the Extended Common

Practice. Oxford University Press.

Waters, Keith. 2005. “Modes, Scales, Functional Harmony, and Nonfunctional Harmony in the

17 of 24



Compositions of Herbie Hancock.” Journal of Music Theory 49 (2): 333–57.

—————. 2016. “Chick Corea and Postbop Harmony.” Music Theory Spectrum 38 (1): 37–57.

Waters, Keith, and J. Kent Williams. 2010. “Modeling Diatonic, Acoustic, Hexatonic, and Octatonic

Harmonies and Progressions in Two- and Three-Dimensional Pitch Spaces; or Jazz Harmony after

1960.” Music Theory Online 16 (3).

Discography

Davis, Miles [Miles Davis All Stars]. [1957] 1991. Walkin’. Prestige PRLP 7076. Reissued, Original Jazz

Classics OJCCD 213, CD.

Kirk, [Rahsaan] Roland. [1961] 1991. We Free Kings. Mercury 20679. Reissued, Mercury 826455-2, CD.

Morgan, Lee. [1965] 1988. Cornbread. Blue Note BLP 4222. Reissued, Blue Note BNZ 109, CD.

Footnotes

* This article is based on chapter 2 of my dissertation; earlier versions were presented at the annual

meetings of the Music Theory Society of the Mid-Atlantic (Philadelphia, 2013) and the Society for

Music Theory (Milwaukee, 2014). I am grateful for many helpful comments along the way, and

especially for those from the anonymous MTO reviewers.

Return to text

1. Bebop and its descendants constitute a style which has been referred to as the lingua franca of

jazz (see Owens 1995, 5; Love 2013, 48); as Sco% DeVeaux puts it, bebop is “both the source of the

present . . . and the prism through which we absorb the past” (1997, 3).

Return to text

2. Schenkerian analysis of jazz is now commonplace: for an introduction, see Larson 1998. Other

important sources include Larson 2005, Martin 2011, and Strunk 1996, to name but a few.

Return to text

3. Incidentally, the edited title of Strunk 2016 (published after his untimely death in 2012) makes

the same separation between “tonal” and “transformational” that Rings observes. Strunk’s original

title was “Analytical Approaches to Chick Corea’s Compositions of the 1960s.” Like much of

Strunk’s work, this article combines Schenkerian and transformational techniques.

Return to text

4. This point is worth underscoring briefly: although the chord symbol Dm7 might be taken to

mean the four-note set D–F–A–C, it might also imply, for example, the entire D dorian collection.

Indeed, it is relatively rare for chordal instruments in jazz to play these simple four-voice seventh

chords, though they are often used for pedagogical purposes and for structuring single-line

improvisations (as suggested above). Understanding harmony in jazz involves more than

understanding the voice-leading among four-voice seventh chords.

Return to text

5. Because (0258) contains a tritone, two different inversions can map a single dominant seventh to a

single half-diminished seventh chord, which is not the case with triads. Gollin refers to the

differences between the two-dimensional triadic TonneU and his three-dimensional tetrachordal

version as “degeneracies” (1998, 200, see also 205n9). Child’s cubic representation only shows 8 of

the possible 24 (0258) tetrachords: those related by parsimonious voice leading to a single

diminished seventh chord (1998, 188).
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Return to text

6. Fake books are collections of lead sheets that traditionally were compiled anonymously and sold

illegally, in order to avoid paying the copyright owners of the compositions they contained. The

name “fake book” comes from the fact that with the melody and chord changes, jazz musicians can

easily “fake” a tune they do not know. The most famous jazz fake book is ironically titled The Real

Book, and was compiled in Boston in the early 1970s. In recent years, fake books have become

mainstream, and most of them have now obtained proper copyright permissions. Hal Leonard now

publishes the 6th edition of The Real Book (a nod to the five illegal editions); many of the notorious

errors in the earlier editions have been corrected and it is now available for purchase legally.

Further references to The Real Book here refer to this version unless otherwise noted. For a history of

fake books, see Kernfeld 2006.

Return to text

7. For example, the tune “Alice in Wonderland” is known to jazz musicians as a jazz walU with one

chord per bar (as played, for instance, by Bill Evans on the album Portrait in Jazz). The main title

music in the 1951 film from which it was taken, however, is in  with a relatively slower harmonic

rhythm.

Return to text

8. Namely, that the chord should be a dominant seventh with E  as the root. A performer might

choose to play pitches that have seemingly no relationship with this chord symbol, but to do so

requires a conscious choice, and often creates interesting moments on which to focus an analysis.

Such an analysis is beyond the scope of the present article, though I touch on these issues in

McClimon 2016 (see especially 129–44 and chapter 5).

Return to text

9. Aebersold 1974. The Aebersold play-along series is a staple of jazz pedagogues; most volumes

contain a selection of tunes, along with a CD providing rhythm-section accompaniment so that

students can practice with a recording. The ii–V volume is number three of well over 100, and

includes the phrase “the most important musical sequence in jazz!” on the cover. Other Aebersold

play-alongs dedicated to small-scale harmonic progressions include Aebersold 1979 (focusing on

turnarounds) and 1999 (focusing on the V7 chord); both of these volumes also make extensive use

of the ii–V progression.

Return to text

10. The triangle on the C chord in this figure indicates a major seventh. The triangle (instead of

“maj7” or “M7”) saves space and reduces clu%er in the graphical representations.

Return to text

11. The original definition of a transformation network is in Lewin [1987] 2007, 196. For a relatively

concise summary, see Rings 2011, 110–16.

Return to text

12. Lewin [1987] 2007, 195–96. See also Hook 2007a, 6–8.

Return to text

13. In fact, many jazz piano texts begin with “three-note” or “shell” voicings, consisting only of

chordal roots, thirds, and sevenths; see, for example Levine 1989, 17–22; and Mulholland and

Hojnacki 2013, 211–12. The half-diminished seventh chord (which is indistinguishable from a

minor seventh chord in the three-note representation used here) does appear frequently in jazz as

the ii chord in minor-key ii–V–I progressions; we will return to this point in section 3 below.

McGowan 2005, 156, following Harrison 1994, refers to chord roots as “bases,” thirds as “modal
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agents,” and sevenths (and sixths) as “defining agents,” while fifths are merely “triadic associates”;

his terms also capture the more important role of the chord members used here.

Return to text

14. Here and throughout, pitch classes are represented as mod-12 integers, with C = 0; all

calculations are performed mod 12.

Return to text

15. This figure represents what Straus 2003 calls “transformational voice leadings.”

Return to text

16. Hook himself makes this clear, noting that for any two sets S and T it is possible to define a

single-type transformation in the union set S  T, though it is not always clear how a function

defined on one set should be extended to cover both. He also notes that even when a single-type

transformation is possible, “the cross-type approach is often simpler and more natural,” which

certainly seems to be the case here (Hook 2007a, 5n8).

Return to text

17. It would be possible to form a GIS by considering all ordered triples as the group, as suggested

above. While this is possible, defining an interval function in this group is much more difficult:

such a function would need to account for the 36 ordered triples in ii–V space (ii7, V7, and I7

chords) as well as the many more (1,692) that are not included in the space. Such a function is

conceivable, but would not in any case reflect the musical realities ii–V space is designed to

portray.

Return to text

18. ii–V space is a directed graph, so in circumstances where the pitch-class distance metric is

somehow not sufficient, we can instead rely on the standard way of measuring distance in a

directed graph: by counting the number of edges in the shortest path between two chords. The

distance from ii7 of C to V7 of E  is then 4: ii to V in C (1 edge), followed by s to V of E  (3 edges).

Return to text

19. These changes are taken from The Real Book, and reflect what is played on the Cornbread

recording. The following discussion also uses the formal labels given in The Real Book, which

describes “Ceora” as an AB form, although it may also be heard as a 32-bar ABAC form. In this

video (and those below), the shaded circle indicates the overall tonic. Because “Ceora” uses only a

part of the space, the circle of Figure 6 has been squared off here so that the labels are easier to

read.

Return to text

20. The concept of tritone substitutes is covered in detail in the next section.

Return to text

21. The tritone substitution has been treated extensively in the literature, so it will not be discussed

at any length here. See, for example, Biamonte 2008, Martin 1988, 11, McFarland 2012, 43–48, and

Tymoczko 2011, 360–65. In addition to these music-theoretical sources, nearly every introductory

jazz harmony textbook contains an explanation of tritone substitution; see Levine 1995, 260–71,

Mulholland and Hojnacki 2013, 63–79, or Terefenko 2014, 152–54, among many others.

Return to text

22. A similar diagram can be found in Pöhlert 1989, 5, and can be seen implicitly in Figure 1-1 of

Martin 1988.

Return to text

∪

T
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23. This figure also uses actual chord names instead of the ii7 and V7 symbols in each key so that

the highlighted relationships can be seen more easily.

Return to text

24. Though chords are defined as ordered triples here, I have included the fifth in this description

to highlight the relationship to the triadic ]ifdZ, which maintains the root and fifth of a triad while

changing the quality of the third. If the fifths are omi%ed, the voice-leading distance between GM7

and Dm7 is much larger—7 semitone displacements—while GM7–A m7 requires only 1. The

efficient voice-leading of GM7 to A m7 has mostly gone unnoticed, since the neo-Riemannian

studies previously cited (Childs 1998, Douthe% and Steinbach 1998, Gollin 1998) do not account for

major seventh chords. Richard Cohn’s “Four-Cube Trio” (2012, 158), which is based on Douthe%

and Steinbach’s “Power Towers,” also omits the major seventh chords.

Return to text

25. The SLIDE transformation was introduced by David Lewin (2007, 178), but has since become a

part of of the standard set of Neo-Riemannian transformations. SLIDE7 is defined here only as a

transformation from I7 chords to ii7 chords, but of course the triadic SLIDE is an involution (two

successive applications of SLIDE to any triad will result in the same triad).

Return to text

26. The SLIDE7 transformation can be found in a chromatic sequence in the second movement of

Gabriel Fauré’s string quartet, mm. 36–39. Hook 2013 analyzes this passage from a number of

different mathematical perspectives.

Return to text

27. This progression is often known as the “Bird Blues,” though Mark Levine (1995, 228) calls it the

“descending blues.” Like many sets of Parker changes, several different versions exist; the changes

here represent a mediation among these sources. The Real Book gives Am7 (a vi chord) instead of

FM7 in m. 11; Levine 1989 gives D 7 (a tritone substitute) instead of G7 in the second half of m. 3;

and Aebersold 1978 omits both D7 chords (the first in the second half of m. 7, the second in m. 11)

and the tonic in m. 11 is an F7. Most of these differences are relatively insignificant, and over the

course of a recorded performance the changes might vary among all of these versions. Other

compositions that contain this progression include Parker’s own “Confirmation,” Sonny Sti%’s

“Jack Spra%,” and Toots Thielemans’s “Bluese%e.”

Return to text

28. As ii–V space makes clear, this minor seventh chord is understood as a ii7 chord, and not as a

minor tonic chord, which are not commonly shown as minor seventh chords. We will return to

minor tonic chords in the next section.

Return to text

29. There are of course many ways to evade a cadence, in jazz and in other styles of music. Because

transformations are designed to model intuitions, calling this “EC” here seems reasonable: the label

captures the intuition that the V chord was going to resolve, but instead moved to a minor chord. In

other situations—if a musical passage evaded cadence in several different ways—“EC” would

probably not be sufficient, and we might wish to rename this transformation something more

descriptive; the “minor continuation” evasion shown here might appear alongside, say, a

“₃cd-transformation” evasion (as in mm. 4–5 of Billy Strayhorn’s “Take the A Train,” for example).

Return to text

30. The bullet here indicates left-to-right function composition: TF • ₇Wa means the transformation

TF followed by the transformation ₇Wa. Note that the example transformation TF • ₇Wa is a single

transformation, defined to be equal to TF followed by ₇Wa. This function composition is familiar
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from pitch-class set theory: we say that the operation  applied to a C major triad yields a C

minor triad. Although the operation involves two functions (invert, then transpose upward by

seven semitones), there is no sense in which an intermediate F minor triad exists. Just as there is an

alternate notation for , namely , we could easily define an alternate notation for the

composition TF • 7Wa.

Return to text

31. EC is impossible beginning on a ii7 chord only if we want to stay within the three sets under

consideration here. Like the other transformations defined here, EC is an admissible transformation

on the set of all mod-12 ordered triples: if we begin with a Dm7 chord, , EC gives us the

triple , which of course is not a major, minor, or dominant seventh chord.

Return to text

32. The major-minor seventh chord as a stable chord is characteristic of the blues; see, for example,

McGowan 2011, 158–59 and throughout. This fact is somewhat obscured in ii–V space, since

major-minor sevenths appear in the space only as V7 chords; we will return to this limitation

below.

Return to text

33. A “turnaround” is what jazz musicians call a short progression that leads from a chord (often a

tonic chord) back to itself. They appear most commonly at the ends of forms, and provide

harmonic interest during solos, when a player might play several choruses in a row. The ii–V

appears frequently in this formal location, as do many progressions based on it: vi–ii–V; iii–VI–ii–V

(which can be understood as two ii–Vs separated by a whole step, as in “Ceora” above);

iii– III7–ii– II7 (a tritone-substituted version of the same progression); and so on.

Return to text

34. The extensions used for the dominant chord in a minor ii– are quite flexible: Aebersold 1974

gives the quality as 7( 9), but Levine (1995, 70–77) usually gives the chord symbol simply as “alt.”

Levine includes the minor ii–V in the category of “melodic minor scale harmony,” and “alt.” is

short for the “altered scale” (the seventh mode of melodic minor). The G altered scale is

G–A –B –B –C –E –F –G, and is sometimes called the “diminished whole-tone” scale, since it

begins as an octatonic scale and ends as a whole-tone scale, or the “super-locrian” scale: the locrian

mode with a fla%ed fourth.

Return to text

35. It is worth underscoring here that the use of cross-type transformations to define ii–V space

allows us to consider the IIm7( 5) chord as distinct from the dominant seventh, despite their

inversional equivalence. Both Childs 1998 and Gollin 1998, for example, include half-diminished

and dominant sevenths in a single Tonne�.

Return to text

36. The ₇Wa transformation from a minor-major seventh to a minor seventh, shown in light blue in

this figure, clu%ers the representation somewhat. An identical arrow would also connect CmM7

with Cm7 (as ii7/B ), but has been omi%ed here for clarity.

Return to text

37. The name of the transformation RZ]I is inspired by the transformation “ResC” in Rings 2011,

25–27.

Return to text

38. In practice, RZ]I will usually be a transformation that moves the root of a V7 down either by

perfect fifth or semitone. In theory, however, there is no limitation on the definition of RZ]I. One

IT
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might, for example, construct a space where tritone substitutes are normative by defining RZ]I to

be equal to TFT; in this case, the gray arrows in Figure 18 would represent the transformation ₇Wa •

.

Return to text

39. In fact, similar statements could be made for all of the sets developed in this article:  would

then become (speaking loosely) “the set of minor-minor seventh chords acting as , , and  in

some key.” In most cases, however, this level of precision is unnecessary, since in ordinary ii–V

space, presented in sections I and II, the quality of the chord uniquely identifies its function as

either ii, V, or I.

Return to text

40. Recall that the composition “pivot fifth” • ₃cd is a single operation: in no sense does an

intermediate B 7-as-V7 exist between B 7-as-tonic and B m7.

Return to text

41. To say that ii–V space is chromatic is not to say it is atonal. The study of harmony is often

broken down by type: “tonal harmony” plays a different role than does “chromatic harmony” in

both theoretical research and pedagogy: studies that focus specifically on chromatic harmony often

differentiate themselves from other tonal theoretical traditions.

Return to text

42. In general, a cyclic group (like the diatonic or chromatic groups) can be generated by a member

only if the generator and the size of the group are relatively prime. The chromatic group, for

example, can be generated only by 1, 5, 7, or 11 (because 2, 3, 4, and 6 and their mod-12

complements divide evenly into 12). Put another way, only the chromatic scale and circle of

fifths/fourths cycle through all 12 pitches in the chromatic octave before returning to the starting

point. Since the diatonic group has 7 elements, any of its members will generate the entire

collection. (Or another way, the diatonic scale can be generated by any generic interval size: 2nds,

3rds, 4ths, or their complements.)

Return to text

43. This figure has been skewed somewhat to conserve horizontal space. If it were drawn in a

manner parallel with standard ii–V space, the ii7 chords would be directly below the IM7 chords.

As is the case throughout, the particular visual representation chosen for a given space does not

affect the abstract structure of the space itself.

Return to text

44. The diatonic transposition operator  is defined in Hook 2008, 139.

Return to text

45. “Ceora” is perhaps even more diatonic than this space implies, since CM7 and B M7 never

appear in the music, while D M7 does. Thus the chord qualities strongly suggest A  major: I and IV

(A  and D ) both appear as major sevenths, while ii and iii (B  and C) appear only as minor seventh

chords (unstable ii7 chords).

Return to text

46. Path consistency is described in Hook 2007a, 25–28.

Return to text

47. My thanks to the anonymous MTO reviewer for this suggestion.

Return to text

48. The formalism has been omi%ed here, but is easy enough to supply for the interested reader.
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Unlike ii–V space, this cycle forms a ef], isomorphic to ordinary diatonic pitch-class space.

Return to text

49. This diatonic progression is not unheard of in jazz: Joseph Kosma’s “Autumn Leaves” and Bart

Howard’s “Fly Me to the Moon,” among others, both make use of completely diatonic

progressions.

Return to text

50. Tymoczko (2011, 389) argues that jazz is a “modernist synthesis,” and that jazz musicians “act

as custodians of a tradition of advanced tonal thinking.”

Return to text
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