
Figure 1. A sequence of constructions abstracted from the
pitch continuum
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Figure 2. Three pitches in one pitch class

[1] Our sequence of mathematical constructions is listed in
Figure 1. Our point of departure is the pitch continuum,
which is not a mathematical construction but an intuition,
since pitch is subjective. (Pitches as we hear them cannot be
measured,  but  only  judged.)  Our  first  construction  is  a
positive-number line for the sound-wave frequencies, which
can be measured and which almost wholly determine the
pitches.

[2]  It  is  the  differences  between  pitches  that  interest  us
musically. Experience teaches us that there is a logarithmic
relation between these subjectively judged differences and
the differences among the corresponding pitch frequencies.
So  our  second  construction  is  a  number  line  for  the
logarithms  of  the  frequencies.  We use  logarithms  to  the
base  2;  this  choice  is  due  to  another  aspect  of  musical
experience: the musical interval between two notes whose
frequencies are in the ratio 2:1 is an octave, and notes one
or more octaves apart from each other are intuitively heard
as  manifestations  of  the  same  note  on  different  levels.
Normally  a  scale  repeats  itself  in  each  octave  (there  are
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GIF 1. How to reckon in flogs rather than logs to base 2
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Figure 3. Three notes in one pitch class
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GIF 2. Some types of algebraic structure

(click to enlarge)

exceptions,  but  they  can  be  treated  as  special  cases),  so
musicians today speak of pitch classes (see Figure 2)—that
is,  of  equivalence  classes  of  notes  that  are  one  or  more
octaves  apart  from  each  other—and  of  “pitch-class
intervals”  or  “pitch-class  relations”,  which  are  the
analogous  equivalence  classes  of  musical  intervals.  With
logarithms  to  the  base  2  it  is  very  easy  to  define  the
addition of logarithms-mod-1 (which we call “flogs”) in such a way that the sum will be musically valid when the flogs for two
pitch-class relations are added.

[3] For a simple example, let us see how the flog for a 5th
with a frequency ratio of 3:2, when added to itself, yields a
flog for a whole- tone. It is readily reckoned that, to three
decimal places, log 3 to the base 2 = 1.585, and hence log
(3/2) to the base 2 = 0.585. Now instead of adding 0.585 +
0.585 and getting 1.170 for a major 9th (which differs by 1
from the log for a whole-tone), we reckon in terms of flogs
and write .585 + .585 = .170. This is illustrated in GIF 1.

[4] According to Max Weber, (1) there are two rational ways to construct a system of tones: by means of harmonic relations or
else by dividing the octave into equal parts. From this hypothesis can be derived two types of generators for our pitch-class
relations (see Figure 1e): either equal- division (whereby 1/n-octave is taken as a flog), or else harmonic (which will be described
below). We are content to consider these two types in our book, but would admit any other valid type that could be adequately
defined.

[5] Our next construction is the algebraic pair: (set, Abelian group), to which such generators give rise. The groups operate on
the sets; the operation is addition. A positive number in a group means “add so much,” but in a set means an amount that is per se
so much. (There is of course no such thing as a “negative” or an “absolute-zero” pitch.)

[6] Although music theorists have always represented notes
as points, we provide, for the sake of greater validity, that
each note in the scale will occupy a small neighborhood on
the number line, in order to give every note some leeway
for things like vibrato,  inexact intonation etc.  (We define
the  musical  intervals  as  between  the  centres  of  these
neighborhoods.) Thus the elements of our pitch-class sets
are  equivalence  classes  of  neighborhoods  around
points-mod-1 (see Figure 3). To reach the highest degree
of validity, one ought to allow that the neighborhoods for
different notes in the same system may differ in size, and
that in certain cases (for example,  when a violinist  has a
wide vibrato) the neighborhoods for notes adjacent in the
scale may overlap, obliging one to treat the neighborhoods
as fuzzy sets. For the sake of simplicity, however, our book
uses  a  kind  of  a  modelling  in  which the  neighborhoods
have definite borders, do not overlap, and are uniform in
any one system. We also postulate that in every system the
leeway is at least a couple of ten-thousandths of an octave.
Thus we reach (at Figure 1h) our next construction: “ideal
systems”. Each ideal system has a set of non-overlapping
neighborhoods (and is thus finite) and a subset of one of
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Figure 4. Our notation for the generating harmonic pitch-class
relations

(click to enlarge)

Figure 5. A rough classification of orders of intervallic
magnitude

our groups. This subset, which we call an “embedded halfgroup”, is an unusual, indeed novel, algebraic structure: it is associative
(when the sums are defined) and has an identity element and inverses, but is not closed with regard to group multiplication
(compounds of the operation). The place of halfgroups vis a vis semigroups, quasigroups etc. in halfalgebra is indicated in GIF

2. (2)

[7] We wonder if in some cases the size of the neighborhood might guarantee a set of pitch classes small enough to be musically
useful. Music is not only an art of sonorities but also (among other things) a cognitive game, and most composers wish to
“juggle” with a set of pitch classes that is big enough to enable them to sustain an interesting 5-, 10- or 20-minute-long game of
this kind—for which only three or four pitch classes would be insufficient—but not so big that the listener cannot grasp the
cognitive game intuitively—for which, say, 40 pitch classes would be too many. One needs an intermediate number, something
like 7, 8, 10, 12, 15 or 20. Gregorian chant normally has 7 or 8; Giovanni Gabrieli and Schutz had 14; some other well-known
Renaissance  composers  (Costeley,  Bull)  composed  music  for  19  pitch  classes;  Bach,  Debussy  and  the  Beatles  had  12.  In
non-Western  music,  the  sizes  of  the  sets  are  comparable.  Now  we  have  noticed  that  in  outdoor  genres—for  instance,
marching-band music—the intonation is not very exact (that is, the neighborhoods for the notes are quite wide) and the number
of pitch classes in a phrase is normally closer to 7 than to 12. Is there a cause-and-effect relation here, in that such bands are
usually unable to project chromatic harmony because their intonation is so inexact? The question has not been investigated (as
the concept of pitch-class-leeways is new); we raise it in order to show that just where we come to our unusual algebraic structure
(the halfgroup) we find a music-theory question which calls for empirical treatment—namely, the possible relation between (a)
the limiting of the set which is due to the pitch- class leeways and (b) the limiting which one would want in any case for the sake
of a cognitively viable juggling of the pitch classes.

[8] It was by means of a natural mapping that we went over from notes and musical intervals to pitch classes and pitch-class
relations; so now we return by reversing the natural mapping and thereby pulling back the system to an “unbounded” scale
(repeating itself indefinitely, octave after octave) from which limited scales, each with a highest and a lowest note, can readily be
derived (Figure 1i–j). One could then go farther, to scales in which certain pitch classes are omitted in certain octaves, or to
scales in which every interval has a little something extra added to it (and thus the frequency-ratio for the octave, for instance, is
a little bigger than 2:1, as on the piano) and so on. We prefer, however, to concentrate our attention on systems.

[9]  Most  systems  of  Western  music  have  had  harmonic
generators. There is a series of such generators, which—so
experience teaches us—can be derived mathematically from
the following series of primes: 2, 3, 5, 7. Our adaptation of
the traditional Roman numerals of music theory for these
generators is shown in Figure 4. With the first generator
alone (which we write with the Roman numeral “I”), one
can make a kind of minimal music in which all the notes
belong to the same pitch class; with the first two generators (I and V), one obtains the most familiar kind of Medieval harmony,
in which the 5ths (and their compounds and inversions), but not any 3rds, are used as consonant intervals; with the first three
generators (I, V and III) one obtains the triadic harmony of the Renaissance; and with all four (I, V, III and VII), one has certain
aspects of later harmony.

[10] The extra “smaller flogs” (positive or negative) referred to in Figure 4 are used to obtain one or more equations between the
generators, and thereby more pitch-class relations with a pitch-class set of a given size. These small amounts, which we designate
with the letter “t”, are necessary for this, because no multiple of the flog of one prime number can be equal to another such flog.
(It is well known that no power of one prime number can have another prime as a factor.) The use of such small extra amounts is
traditionally called “tempering”, and in practice, temperaments—systems with tempered consonances—have been normal since
the Renaissance.

[11] How small should these small amounts be? To answer
this  question  we  have  to  classify  empirically  certain
intervallic  magnitudes,  or  rather,  certain  ranges  of
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GIF 3. Reckoning the size of a chromatic semitone

(click to enlarge)

Figure 6. A table showing how to find the most feasible
equations nV = III

(click to enlarge)

Figure 7. Branches in our system-tree

magnitude. Some amounts that are too small to be used for
melodic  intervals  between  notes  (or  for  pitch-class
relations)  are  nonetheless  big  enough—in  the  form  of
deviations from, say, log 3 or log 5—to disturb a generating
harmonic  pitch-class  relation  by  making  the  resulting
intervals sound out of tune. A rough classification is shown
in Figure 5. This is only a first approximation; empirically
there is no particular validity in a tenfold relation between
the different ranges. For example, while the semitones in
equal  temperament  are  each  1/12  octave,  a  semitone
between an untempered major 3rd (i.e. where t^III^ = 0)
and an untempered minor 3rd would be only some 6% of
an octave (this is reckoned in GIF 3), so it would be better
to say that the range of magnitudes for melodic steps is “20ths” rather than “10ths” of an octave. Also, an amount which would
very likely render a 5th sour can in certain cases serve for the tempering of a major 3rd. (Such is the case in equal temperament,
where the major 3rds are tempered by a little more than 1% of an octave; whereas a 5th tempered by such an amount would be
melodically and harmonically too ugly to use in many kinds of music.) Thus the concept of ranges or orders of intervallic
magnitude needs to be refined empirically by means of psycho- acoustical probings and a reading of the old music treatises
(which often discuss temperaments). In general, however, tempering is taken to mean the dividing up of such inconvenient
magnitudes as are labeled “out-of- tune-ness” in Figure 5 into smaller, less noxious amounts to be distributed amongst a suitable
chain of generating pitch-class relations.

[12]  In  order  to  find  the  most  feasible  possibilities  for
tempering “two- dimensional” systems (systems with V and
III  as  generators,  but  not  VII),  we  ask  the  following
question: If one multiplies flog 3 by 1, -1, 2, -2, 3, -3 and so
on, then which are the multiples that approach successively
closer to flog 5 or its inversion? In the last (full) column of
Figure 6 we see the smallest flogs by which it is possible to
temper V and III at once by distributing the various such
differences evenly amongst the group of generators. (3) The
first two such flogs—T^1^ and T^2^—are too big (they
would mar the pitch-class relations); T^3^ is good; T^4^ is
nearly insignificant, hence very good; to make use of T^5^
would involve more than 45 pitch classes—too many for
traditional composition. Thus the equations at the far right
in Figure 6 represent the most likely possibilities. They are
the most feasible equations between harmonic generators
for a two-dimensional system.

[13]  Now we  are  ready  to  discuss  our  system tree  (see
Figure 7).  We include those  possibilities  that  have been
significant  in  the  history  of  Western  composition  and
theory.  There  are  harmonic  and  equal-division  systems,
according  to  the  type  of  generator.  Among  harmonic
systems we have those of one,  two or three dimensions,
according  to  the  number  of  generators  (apart  from  the
identity  element).  Also  among  harmonic  systems,  we
distinguish between coherent sytems (in which all the pitch
classes make one chain of 5ths) and non-coherent systems
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Figure 8. Diagram of a meantone system with 14 pitch classes

(click to enlarge)

GIF 4. Schütz, “Die so ihr den Herren fürchtet” (SWV 164)

(click to enlarge and see the rest)

GIF 5. A 15th-century quasi-Pythagorean system and some
evidence of its use: music in which triads with an explicit sharp

are especially salient

—which  have  proven  musically  so  awkward  that  no
well-known composer  has ever  written music  for  such a
system, even though many theorists since the 16th century have described non-coherent, two-dimensional systems without any
tempered intervals. (Mostly they were theorists who did not understand the problem to which tempering is the solution.)

[14]  Among  coherent  systems,  we  have  temperaments  and  (one-dimensional)  untempered  systems.  Then  we  have  regular
temperaments (in which each kind of consonant interval is of uniform size), semi-regular temperaments (discussed below), and
irregular temperaments, in which some 5ths are tempered a little more than others and hence the 3rds etc. also vary. Certain
irregular temperaments have been quite important historically.

[15] Among regular, two-dimensional temperaments, there are two main types (as we have seen in connection with Figure 6); and
when both of their defining equations (4V = III; -8V = III) are true for the same system, then we have an intersection of the two
types, which is so important historically that it has its own name, “equal temperament”; and this name can refer as well to an
equivalent one-dimensional type (i.e. with a “circle” of twelve 5ths but no consonant 3rds) which may conceivably have played a
role in the history of lute music in the 15th century, and also to a three-dimensional type which practically everyone would agree
is to be found in the music of, say, Villa-Lobos (and which we believe is to be found in some earlier music as well: think of how
Wagner will resolve an appoggiatura to a 7th-chord from which the harmony is then just as free to move as it would be, in
17th-century harmony, from a triad).

[16] Apart from equal temperament, there is a spectrum of
musically good possibilities for each of the two types MT
and QP (see Figure 7h). Meantone temperaments were very
important for Renaissance and early Baroque music. They
usually put at the composer’s disposition two or three flats
and three or four sharps: if three flats and four sharps, then
in  all  the  14  pitch  classes  (7  chromatic  and  7  diatonic)
mentioned above in connection with Gabrieli and Schutz.
(See  Figure  8.  It  is  well  known  that  some  keyboard
instruments had 14 keys per octave, i.e. with “split keys”
for  E /D  and  for  A /G .)  The  chain  of  5ths  had  a
beginning  and end,  and this  was  very  important  for  the
scheme of  Renaissance modes,  and often important  also
for the planning of compositions. In GIF 4a, for example,
we see how Schutz in one of his pieces timed the successive
steps  toward  the  edges  of  his  chain  of  5ths. (4)  In  an
18th-century  composition  one  would  normally  find  the
richest harmony in the middle of the movement, not just
before the end. And why? Because in the 18th century, the
chain of 5ths was closed to make a circle; to modulate “far
away” did not mean to approach a border; so towards the
end of  the piece one would merely  return to the freely-
chosen  central  pitch  class,  with  no  opportunity  to  draw
upon the structural  discipline of  an impending fence.  In
many late 19th-century compositions, on the other hand, all
the pitch classes are introduced already in the first few bars.

[17]  A quasi-Pythagorean temperament with twelve pitch
classes was of some importance in the first half of the 15th
century. The 5ths were either untempered or else so little
tempered  that  no  one  at  all  was  aware  of  it.  The  five
chromatic pitch classes were linked to B  in the chain of
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(click to enlarge and see the rest)

GIF 6. Lewin’s analysis of a passage from Parsifal

(click to enlarge)

Figure 9. Some formulas distinguishing F1 and F2

5ths—we know this from contemporary treatises(5)—and
so there was a “wolf 5th” between B and F , as F  was
tuned so low that it made a sour 5th with B. By chance,
however,  all  these  rather  low  chromatic  notes  made
remarkably euphonious 3rds (hardly tempered at all) with
the diatonic notes, as indicated by the slanted lines in the
diagram  at  the  beginning  of  GIF  5a. (6)  Now  in  this
transitional  period  between  one-dimensional  and
two-dimensional  harmony,  certain  composers  would
sometimes use such a 3rd at the end of a section of a piece (as can be seen in the musical examples in GIFs 5b–5g),(7) but no
one would make such use of a 3rd without a sharp. To understand this interesting moment in the history of harmony, one must
appreciate properly the significance of the system; we will say more about this below.

[18] For some of the regular temperaments in our system tree, there is an equivalent equal-division system—that is, physically the
same  though  differently  conceived  (see  Figure  7i–j).  In  a  harmonic  system there  exists  consonance  (since  the  harmonic
generators are the most consonant pitch-class relations) and hence nearly always also its counterpart, dissonance; and there is an
important distinction between diatonic semitones (between two notes with different letter-names) and chromatic  semitones
(between  two  notes  with  the  same  letter-name).  In  an  equal-  division  system  there  is  no  consonance,  and  therefore  no
dissonance. If the generator is 1/12-octave and if all twelve of the ensuing pitch classes are in the system, then one composes
“mit zwoelf nur auf einander bezogenen Toenen” (in Arnold Schoenberg’s words) and there is no distinction between diatonic
and chromatic semitones: they are all qualitatively as well as quantitatively alike. This aspect of Schoenberg’s dodecaphonic music
is just as important as his atonality (the fact that each movement or piece is not somehow centered on one privileged pitch class),
which is often said to be its most basic technical characteristic.

[19] With such a perspective on how various systems have
affected the art of composition, one can appreciate better
the  technical  significance  of  enharmonic  modulations  in
Romantic music. In most enharmonic modulations a given
semitone is used first as a chromatic semitone and then as a
diatonic one, or vice versa. More and more in the course of
the  19th  century,  the  significance  of  enharmonic
modulations lay not so much in their momentary effect as
in  the  way  they  enabled  composers  to  exploit  the  same
physical scale in terms of two systems at once: harmonic
and  equal-division.  Thus  David  Lewin’s  analytical  sketch
(reproduced  in  GIF  6)  of  a  well-known  phrase  in  the
prelude  to  Wagner’s  Parsifal (8)  includes  not  only  Roman
numerals  for  a  traditional  harmonic  analysis,  but  also
Arabic numerals to show how 3 + 3 + 1 = 7 semitones
(adumbrating  the  salient  “Zauber-motif ”  in  Parsifal)  lead
from A  to a cadence on E .

[20] It is possible to distinguish certain “families” of equal-
division systems (see Figure 7j)  equivalent to the various
kinds  of  temperaments.  Figure  9  includes  formulas
(derived in one of the appendices of our book) for their
generators.  GIF  7  reproduces  a  diagram  by  Isaac
Newton(9)  showing  how  an  equal-division  system  with
1/53-octave  as  generator  and  with  15  pitch  classes  is
equivalent to the harmonic system represented in Figure

10.  The  diatonic  semitones,  labeled  “mi-fa”  in  GIF  7,
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GIF 7. A diagram made by Isaac Newton

(click to enlarge)

Figure 10. The V and III relations in Newton’s system

(click to enlarge)

GIF 8. Some 18th-century irregular temperaments

amount to 5/53-octave; the chromatic semitones amount
to 4/53. Newton’s harmonic system is not coherent, but if
he had provided for an additional pitch class at “4” in the
diagram, it would have made at once a good A  to his E
(at “35”) and a good G  to his C  (at “26”), and thus he
would have had a coherent, quasi-Pythagorean system. (10)

[21]  Among  the  irregular  temperaments,  the  most
important historically were those used in the late 17th and
18th  centuries.  For  most  composers  of  that  time,  the
various keys had much more individual character than they
do today, and many contemporary music theorists said that
it  was due to the irregular  temperaments of the day.  An
irregular temperament based on a circle of twelve Vs can
be described as a variant of equal temperament, so in GIF

8  the sizes of each semitone in three such 18th- century
schemes (by J. G. Neidhardt, J. H. Lambert and Vallotti) are
described as some percent of 1/12-octave. The numbers at
the  outer  edges  of  those  diagrams  show the  differences
between semitones that are adjacent in the circle of 5ths (in
the  sense  that  E-F  and  F -G  are  adjacent  to  B-C)  and
thereby show that in each of these competently designed
schemes, the semitones vary quite gradually, with B-C and
E-F being  the  largest  and F-G  and A -B  the  smallest.
There is an analogous pattern of gradually varied nuances
among the 3rds and 6ths, with C-E-G being tempered least
and G -B -D -F most.

[22]  On  the  silent  screen  we  cannot  demonstrate  the
acoustical differences amongst the different keys in such a
system.  But  we can describe how, in the first  section of
Louis Couperin’s famous F -minor Pavane (see GIF 9), the
composer used the pitch class F = E  in a special way. E ,
which  is  essential  to  the  key  of  F -minor,  was  in  the
French-  style  irregular  temperament  tuned  so  high  in
relation to C  that  the  resulting interval  was  acoustically
rather harsh. In bar 2 (at the first asterisk in GIF 9) E  is
avoided: contrapuntally, our little ancillary example in GIF
9  would  sound  so  much  more  natural  that  Couperin’s
alternative  resolution  of  the  chord  F -C -G -A  is
obviously an artful evasion. A similar avoidance of E  at
the  end  of  bar  5  (at  the  second  asterisk)  precipitates  a
modulation to A-major in the next two bars. In bars 10, 11
and 16 (at  the next three asterisks)  E  does  appear,  but
each time in so dissonant a context (notice the A’s and B’s)
that the acoustic sourness of E  with C  merely gilds the
lily, as it were. C -E  is at last heard in a straightforward
triad at the end of the section; but then in the next bar (not
included in GIF 9) the composer reverts immediately to a
C -minor chord, as if to say, “Alas! E  is too  sharp for a
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GIF 9. Louis Couperin, Pavane in F#-minor, first section

(click to enlarge)

GIF 10. The “margin of equivalence” between two physically
different systems with the same number of pitch classes (in this

case, four)

(click to enlarge)

straightfoward triad; let us revert to E .” This is an extreme
case in that the consonant status of the major 3rd (or 10th)
was  actually  compromised  by  its  heavy  tempering. (11)  A
wealth of subtler nuances involving some of the other 3rds
in this piece are just as telling when the music is heard in a
stylistically  appropriate  tuning  (matching  the  conceptual
system).  It  would  be  far  more  intelligent,  however,  to
demonstrate such nuances than to try to describe them in
absentia.

[23] In early 15th-century music such as represented in GIF
6, the distinctly euphonious quality of a 3rd or 6th with a
sharp in the quasi- Pythagorean temperament is sometimes
especially  salient  because  it  occurs  right  after  (or  right
before) a prominent harmonic 3rd or 6th that is tempered
by an entire comma (that is, by nearly as much as C -E  in
Louis  Couperin’s  pavane).  We  may  therefore  speak  of  a
“semi-regular” temperament (Figure 7m), because while the
5ths are uniform, the composer has evidently found two
sizes of consonant or virtually consonant major 3rd, major
6th etc. in the scale. This is a queer kind of system, destined
to play only a brief (though important), transitional role in
the  history  of  harmony  even  though  it  is  physically  the
same as a regular system.

[24] To measure the difference between any two systems
that are physically almost but not quite the same, we have
devised a “margin of equivalence”, and with it the concept
of “quasi-systems” which have no generators (and thus no
subset of a group of pitch-class relations) but only a set of
pitch classes, whose neighborhoods are, however, unequal.
To put it very briefly: if two systems have the same number
of  pitch  classes,  then  the  margin  of  equivalence  is  the
smallest overlap—i.e. where the notes differ most when the
two systems are aligned as well as possible (as illustrated in
GIF 10).

[25] We hope that our book in which these and some related ideas are elaborated upon(12) will prove of value to music theory
and to the study of music history. Renaissance and Baroque theorists took only some limited steps away from Medieval models
of scales (by accepting ratios involving 5 and 7 as prime factors, and then by accepting irrational ratios), and even today many
music theorists more or less vaguely favor the ancient Pythagorean idea that “Music is sonorous number.” Here our algebraic
approach  could  be  of  value,  not  only  with  regard  to  irregular  temperaments  (where  the  pitch-class  relations  have  to  be
represented as functions of the pitch classes and not as numbers in their own right), but also for the designing of experiments to
investigate the various musical and psycho-acoustical phenomena that give rise to pitch-frequency leeways for the notes. (Instead
of a general leeway u, one could distinguish u^1^, u^2^, u^3^ . . . ) Some refinement of concepts pertinent to music history may
also be derived from our work, as music historians have generally either neglected most of the various kinds of system which we
describe  or  else  have mistakenly  treated them as  a  negligible  aspect  of  performance practice—that  is,  as  unconscious and
inconsequential variants of equal temperament insofar as composition is concerned.
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Footnotes

1. Max Weber, Die rationalen und soziologischen Grundlagen der Musik, ed. Theodor Kroyer (Munich 1921). (The English translation
published in 1958 is, alas, so inadequate that it quite misrepresents Weber’s thinking.)
Return to text

2. All the terms in GIF 2 except “halfgroup” are defined in Richard Herbert Bruck, A Survey of Binary Systems (Springer, Hamburg
1958). On the basis of our cordial correspondence with Eytan Agmon we think that a 12-oriented theory of diatonicism (as
described in his “A mathematical model of the diatonic system” in Journal of Music Theory, 33:1) can be improved upon, insofar as
validity  in  regard to  certain  music  is  concerned (e.g.  Gregorian chant),  by  an  acceptance of  the  concept  of  halfgroups as
applicable to music.
Return to text

3. When we go from one n to the next we get a rather lower T^n^ because s^n^ is smaller while at the same time m^n^ is bigger.
(However, since each T is an average of some t^V^s and a t^III^; one of those t’s may be less than T if the other is more.) Some
intermediate multiple might yield a slightly lower average t (if the quasi-s is not as much bigger as the multiple is smaller), but it is
reasonable, once the multiple becomes bigger than, say, 15 or 20, to demand a distinctly lower average t in return for involving
more pitch classes.
Return to text

4. GIF 4a shows a diagram from page 144 of our book and GIFs 4b, 4c, and 4d show some relevant excerpts from the piece to
which the diagram refers, “Die so ihr den Herren fuerchtet” (SWV 364). Twenty diagrams of this kind (with relevant musical
examples) are included in Lindley, “Heinrich Schutz: intonazione della scala e struttura tonale” (with a long abstract in English),
in Recercare, vol. i (1990).
Return to text

5. Lindley, “Pythagorean Intonation and the Rise of the Triad”, Royal Musical Association Research Chronicle 16 (1980).
Return to text

6. The diagram is on page 55 of our book.
Return to text

7. These examples (GIFs 5b–5g) show the conclusions of sections from the following pieces: Landini,  “O fanciula giulia;”
Matteo da Perugia, “A qui fortune” and “Le grant desir;” a Kyrie for organ from the Faenza Codex; Dufay, “Mon chier amy;”
and a prelude from the Buxheim Organ Book (no. 242).
Return to text

8. David Lewin, Generalized Musical Intervals and Transformations (Yale, 1987), p. 161. The 3 + 3 + 1 diagram ends with a high E ,
but the tune really goes to the E  an octave lower after gliding down, step by step, from high E  (a minor 3rd above C ) to
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middle D (a diatonic semitone below E ). One hears an implicit equation between the E  and the D, inferring that they are an
octave apart, and this gives the passage its enharmonic character.
Return to text

9. GB-Cu add. 4000, fol. 105v. (Reproduced on page 57 of our book.)
Return to text

10. Helmholtz for his “Harmonium mit natuerlicher Stimmung” used a system of this latter kind with 24 pitch classes. See
Hermann von Helmholtz, On the Sensations of Tone, tr. Alexander J. Ellis, 2nd ed. (London, 1885), 316–19, or for a more succinct
account, the entry on “Just intonation” in The New Grove Dictionary of Musical Instruments.
Return to text

11. It may be worth repeating that this is a French style. According to Bach’s concept of the chromatic scale, which is reflected in
what we know about his tuning (Lindley, “Bach’s Harpsichord Tuning”, The Musical Times, vol. 126, December) as well as his
music, harmony in “extreme” keys is less constrained.
Return to text

12. Mathematical Models of Musical Scales (Verlag fur Systematische Musikwissenschaft, Postfach 9026, DW-5300 Bonn, Germany).
Return to text

Return to beginning
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