Macroharmonic Progressions through the Discrete Fourier Transform: An Analysis from Maurice Duruflé’s Requiem
Main Article Content
Abstract
This article examines macroharmony through the lens of the discrete Fourier transform (DFT) using computational analysis. It first introduces the DFT, giving an interpretive framework to understand the theory of chord quality first introduced by Ian Quinn (2007) before extending the theory to macroharmonies. Subsequently, the paper discusses different approaches—including different weighting and windowing procedures—to retrieving pitch data for computational analysis. An analysis of macroharmony in Domine Jesu from Duruflé’s Requiem Op. 9 follows. I show that the DFT reflects intuition, reveals form-functional macroharmonies in the movement, and provides us with a perspective to find novel hearings.
Article Details
Copyright © 2019 by the Society for Music Theory. All rights reserved.
[1] Copyrights for individual items published in Music Theory Online (MTO) are held by their authors. Items appearing in MTO may be saved and stored in electronic or paper form, and may be shared among individuals for purposes of scholarly research or discussion, but may not be republished in any form, electronic or print, without prior, written permission from the author(s), and advance notification of the editors of MTO.
[2] Any redistributed form of items published in MTO must include the following information in a form appropriate to the medium in which the items are to appear:
This item appeared in Music Theory Online in [VOLUME #, ISSUE #] on [DAY/MONTH/YEAR]. It was authored by [FULL NAME, EMAIL ADDRESS], with whose written permission it is reprinted here.
[3] Libraries may archive issues of MTO in electronic or paper form for public access so long as each issue is stored in its entirety, and no access fee is charged. Exceptions to these requirements must be approved in writing by the editors of MTO, who will act in accordance with the decisions of the Society for Music Theory.
This document and all portions thereof are protected by U.S. and international copyright laws. Material contained herein may be copied and/or distributed for research purposes only.